The novel immunogenic chimeric peptide vaccine to elicit potent cellular and mucosal immune responses against HTLV-1

This study reports on the immunogenicity assessment of a novel chimeric peptide vaccine including Tax, gp21, gp46, and gag immunodominant epitopes of human T-cell lymphotropic virus type 1 (HTLV-1) to induce immunity against HTLV-1 after subcutaneous (SC) or intranasal administration in a mice model. Additionally, to elevate the efficacy of the HTLV-1 vaccine, the chimera was physically mixed with monophosphoryl lipid A (MPLA) or ISCOMATRIX (IMX) adjuvants. For this purpose, the ISCOMATRIX with a size range of 40 to 60 nm were prepared using lipid film hydration method. Our investigation revealed that the mixture of IMX and chimera could significantly increase antibody titers containing IgG2a, and mucosal IgA, as well as IFN-γ and IL-10 cytokines and decrease the level of TGF-β1, compared to other vaccine formulations. The intranasal delivery of chimera vaccine in the absence or presence adjuvants stimulated potent mucosal sIgA titers relative to subcutaneous immunization. Furthermore, the SC or nasal delivery of various vaccine formulations could shift the immunity toward cell-mediated responses, as evident by higher IgG2a and IFN-γ, as well as suppressed TGF-β1 level. Our findings suggest that proper design, construction, and immunization of multi-epitope vaccine are essential for developing an effective HTLV-1 vaccine.Graphical abstract
Source: International Journal of Pharmaceutics - Category: Drugs & Pharmacology Source Type: research