Studying structure and function of membrane proteins with PELDOR/DEER spectroscopy – A crystallographers’ perspective

Publication date: Available online 3 March 2018Source: MethodsAuthor(s): Janin Glaenzer, Martin F. Peter, Gregor HageluekenAbstractIn 1985, the first X-ray structure of a membrane protein was determined. Today, more than 30 years later, many more structures have been solved. Nevertheless, studying the structure of membrane proteins remains a very challenging task. Due to their inherent conformational flexibility, having a single X-ray structure is usually only the first step towards truly understanding the function of these dynamic molecules. For this reason, additional methods are needed that can provide complementary information, especially about conformational flexibility. Pulsed electron-electron double resonance spectroscopy (PELDOR, also known as DEER) is such a method. It can be used to precisely measure nanometer distance distributions between intrinsic or artificially introduced spin-centers in macromolecules and thereby to probe the conformational state of the macromolecule. PELDOR can be applied in solution, in detergent, in lipid bilayers and even within cells. However, PELDOR is an advanced spectroscopy technique and requires specialised equipment and training. This chapter aims to be a starting point for crystallographers and other structural biologists who want to get a better understanding of PELDOR spectroscopy and its application. It gives an insight into the planning stages of the experiment (i.e., which spin labels are possible and where to place them), ...
Source: Methods - Category: Molecular Biology Source Type: research