Gene cloning, expression, and X-ray crystallographic analysis of a β-mannanase from Eisenia fetida

Publication date: October 2018Source: Enzyme and Microbial Technology, Volume 117Author(s): Mitsuhiro Ueda, Yu Hirano, Hiroaki Fukuhara, Yuki Naka, Masami Nakazawa, Tatsuji Sakamoto, Yoshiyuki Ogata, Taro TamadaAbstractThe endo-1,4-β-mannanases (Ef-Man) gene from Eisenia fetida was determined to consist of 1131 bp and encode a 377 amino acid protein. The amino acid sequence showed similarity with the endo-1,4-β-mannanases of Daphnia pulex (62%), Cryptopygus antarcticus (64%), Crassostrea gigas (61%), Mytilus edulis (60%), and Aplysia kurodai (58%). The gene encoding mature Ef-Man was expressed in Pichia pastoris (GS115 strain). Based on SDS-PAGE analysis, the molecular mass of the purified recombinant Ef-Man (rEf-Man) was estimated to be 39 kDa. All catalytically important residues of endo-1,4-β-mannanases in the glycoside hydrolase (GH) family 5 were conserved in Ef-Man. The optimal temperature for rEf-Man was identified as 60 °C. HPLC and HPAEC analyses suggest that Ef-Man requires at least six subsites for efficient hydrolysis and is capable of performing transglycosylation reactions. The overall structure of rEf-Man is similar to those of GH5 family proteins, and tertiary structures around the active site are conserved among endo-1,4-β-mannanase families. X-ray crystallographic analysis supports the hydrolysis and transglycosylation reaction mechanism determined by HPLC and HPAEC analyses.
Source: Enzyme and Microbial Technology - Category: Biotechnology Source Type: research
More News: Biotechnology | Genetics