Cost-effective synthesis of three-dimensional nitrogen-doped nanostructured carbons with hierarchical architectures from the biomass of sea-tangle for the amperometric determination of ascorbic acid.

Cost-effective synthesis of three-dimensional nitrogen-doped nanostructured carbons with hierarchical architectures from the biomass of sea-tangle for the amperometric determination of ascorbic acid. Anal Chim Acta. 2018 Oct 31;1029:15-23 Authors: Hei Y, Li X, Zhou X, Liu J, Hassan M, Zhang S, Yang Y, Bo X, Wang HL, Zhou M Abstract In this work, the three-dimensional nitrogen-doped nanostructured carbons with hierarchical architectures (3D-NNCsHAs) with high density of defective sites, high surface area and pluralities of pore size distributions was prepared through the pyrolysis of sea-tangle (Laminaria japonica), an inexpensive, eco-friendly and abundant precursor. Benefitting from their structural uniqueness, a selective and sensitive ascorbic acid (AA) sensor based on 3D-NNCsHAs was developed. Compared to the glassy carbon electrode (GCE) and the carbon nanotubes modified GCE (CNTs/GCE), the 3D-NNCsHAs modified GCE (3D-NNCsHAs/GCE) presents higher performance towards the electrocatalysis and detection of AA, such as lower detection limit (1 μM), wider linear range (10-4410 μM) and lower electrooxidation peak potential (-0.02 V vs. Ag/AgCl). In addition, 3D-NNCsHAs/GCE also exhibits high anti-interference and anti-fouling abilities for AA detection. Particularly, the fabricated 3D-NNCsHAs/GCE is able to determine AA in real samples and the results acquired are satisfactory. Therefore, the 3D-NNCsHAs can be considered as a ...
Source: Analytica Chimica Acta - Category: Chemistry Authors: Tags: Anal Chim Acta Source Type: research