Age-related effects on ERP and oscillatory EEG-dynamics in a 2-back task.

It is well known that working memory is one of the most vulnerable cognitive functions in elderly. However, little is known about the neuronal underpinnings and temporal dynamics of working memory mechanisms in healthy aging which are necessary to understand the age-related changes. To this end, 36 young and 36 old healthy individuals performed a 2-back task and a 0-back control task, while the electroencephalogram (EEG) was recorded. Participants were instructed to press a response key whenever a target appeared and not to respond in case of nontargets. Expectedly, older participants showed considerably slower RTs and significantly higher rates of omitted targets and false alarms than young participants in the 2-back task, whereas no age-group difference in detection rate was found in the 0-back task. From the EEG event-related potentials as well as time-frequency plots were computed. The ERPs showed a general delay of the frontocentral N2, and an attenuation and delay of both the P3a and P3b in older versus younger adults. Importantly, the frontal P3a was reduced in older adults in the 2-back task. Time-frequency decomposition revealed consistently lower power in frontal theta (6 Hz) and parietal alpha (9–11 Hz) frequency range in older versus younger adults whereas no age-related differences were found in the delta frequency range. Task unspecific reduction of posterior alpha in elderly was paralleled by a reduction of the P3b. In contrast, the older adults had a strongl...
Source: Journal of Psychophysiology - Category: Psychiatry & Psychology Authors: Source Type: research