An Integrated Approach Using Chaotic Map & amp; Sample Value Difference Method for Electrocardiogram Steganography and OFDM Based Secured Patient Information Transmission

AbstractThis paper presents a patient ’s confidential data hiding scheme in electrocardiogram (ECG) signal and its subsequent wireless transmission. Patient’s confidential data is embedded in ECG (called stego-ECG) using chaotic map and the sample value difference approach. The sample value difference approach effectually hides the patient’s confidential data in ECG sample pairs at the predefined locations. The chaotic map generates these predefined locations through the use of selective control parameters. Subsequently, the wireless transmission of the stego-ECG is analyzed using the Orthogonal Frequency Division Multiplexi ng (OFDM) system in a Rayleigh fading scenario for telemedicine applications. Evaluation of proposed method on all 48 records of MIT-BIH arrhythmia ECG database demonstrates that the embedding does not alter the diagnostic features of cover ECG. The secret data imperceptibility in stego-ECG is evide nt through the statistical and clinical performance measures. Statistical measures comprise of Percentage Root-mean-square Difference (PRD), Peak Signal to Noise Ratio (PSNR), and Kulback-Leibler Divergence (KL-Div), etc. while clinical metrics includes wavelet Energy Based Diagnostic Distortion (WE DD) and Wavelet based Weighted PRD (WWPRD). The various channel Signal-to-Noise Ratio scenarios are simulated for wireless communication of stego-ECG in OFDM system. The proposed method over all the 48 records of MIT-BIH arrhythmia database resulted in averag...
Source: Journal of Medical Systems - Category: Information Technology Source Type: research