Structural Characterization of the Trimerization of TRAF6 Protein Through Molecular Dynamics Simulations

AbstractThe tumour necrosis factor (TNF) receptor-associated factor (TRAF) family of proteins having E3 ligase activity are the key molecules involved in cellular immune response pathways. TRAF6 is a unique member of the TRAF superfamily differing from other members of the family, owing to its specific interactions with molecules outside the TNF receptor superfamily. The C-terminal domain of TRAF proteins contains the catalytic residues and are known to be involved in self-oligomerization forming a mushroom-shaped trimeric structure, which is the functional form of the protein. However, the monomeric crystal structure of TRAF6 C-terminal domain has been already determined, but the trimeric structure of the same is still not available. We here applied computational structural modelling and molecular dynamics simulations studies to get insights into the molecular interactions involved in determining the trimeric structure of the TRAF6 C-terminal domain. The non-availability of the trimeric structure of the TRAF6 C-terminal domain prevented the elucidation of the molecular mechanism of many different biological processes. Our results suggest that the trimer complex is transient in nature. The amino acid residues Lys340 and Glu345 in the coiled coil domain in the C-terminus of TRAF6 play a critical role in trimer structure formation. This structural modelling study may therefore be utilized to obtain the experimentally validated trimeric structure of this important protein.
Source: Interdisciplinary Sciences, Computational Life Sciences - Category: Bioinformatics Source Type: research