A Transcriptional Program for Detecting TGF{beta}-Induced EMT in Cancer

Most cancer deaths are due to metastasis, and epithelial-to-mesenchymal transition (EMT) plays a central role in driving cancer cell metastasis. EMT is induced by different stimuli, leading to different signaling patterns and therapeutic responses. TGFβ is one of the best-studied drivers of EMT, and many drugs are available to target this signaling pathway. A comprehensive bioinformatics approach was employed to derive a signature for TGFβ-induced EMT which can be used to score TGFβ-driven EMT in cells and clinical specimens. Considering this signature in pan-cancer cell and tumor datasets, a number of cell lines (including basal B breast cancer and cancers of the central nervous system) show evidence for TGFβ-driven EMT and carry a low mutational burden across the TGFβ signaling pathway. Furthermore, significant variation is observed in the response of high scoring cell lines to some common cancer drugs. Finally, this signature was applied to pan-cancer data from The Cancer Genome Atlas to identify tumor types with evidence of TGFβ-induced EMT. Tumor types with high scores showed significantly lower survival rates than those with low scores and also carry a lower mutational burden in the TGFβ pathway. The current transcriptomic signature demonstrates reproducible results across independent cell line and cancer datasets and identifies samples with strong mesenchymal phenotypes likely to be driven by TGFβ. Implications: The TGFβ-ind...
Source: Molecular Cancer Research - Category: Cancer & Oncology Authors: Tags: Signal Transduction Source Type: research