Quantitative Imaging of Cerebral Thromboemboli In Vivo [Basic Sciences]

Background and Purpose—Quantitative imaging for the noninvasive assessment of thrombolysis is needed to advance basic and clinical thrombosis-related research and tailor tissue-type plasminogen activator (tPA) treatment for stroke patients. We quantified the evolution of cerebral thromboemboli using fibrin-targeted glycol chitosan–coated gold nanoparticles and microcomputed tomography, with/without tPA therapy.Methods—We injected thrombi into the distal internal carotid artery in mice (n=50). Fifty-five minutes later, we injected fibrin-targeted glycol chitosan–coated gold nanoparticles, and 5 minutes after that, we treated animals with tPA or not (25 mg/kg). We acquired serial microcomputed tomography images for 24 hours posttreatment.Results—Thrombus burden at baseline was 784×103±59×103 μm2 for the tPA group (n=42) and 655×103±103×103 μm2 for the saline group (n=8; P=0.37). Thrombus shrinkage began at 0.5 to 1 hour after tPA therapy, with a maximum initial rate of change at 4603±957 μm2/min. The rate of change lowered to ≈61% level of the initial in hours 1 to 2, followed by ≈29% and ≈1% in hours 2 to 3 and 3 to 24, respectively. Thus, 85% of total thrombolysis over 24 hours (≈500 μm2, equivalent to 64% of the baseline thrombus burden) occurred within the first 3 hours of treatment. Thrombus burden at 24 hours could be predicted at around 1.5 to 2 hours. Saline treatment was not associated with significant changes in the thrombus burden. Infarc...
Source: Stroke - Category: Neurology Authors: Tags: Cerebrovascular Disease/Stroke, Ischemic Stroke, Embolism, Thrombosis Original Contributions Source Type: research