Comprehensive Comparison of Virtual Monoenergetic and Linearly Blended Reconstruction Techniques in Third-Generation Dual-Source Dual-Energy Computed Tomography Angiography of the Thorax and Abdomen

Objectives: The aim of this study was to perform an objective and subjective image analysis of traditional and advanced noise-optimized virtual monoenergetic imaging (VMI) algorithms and standard linearly blended images in third-generation dual-source dual-energy computed tomography angiography (DE-CTA) of the thorax and abdomen. Materials and Methods: Thoracoabdominal DE-CTA examinations of 55 patients (36 male; mean age, 64.2 ± 12.7 years) were included in this retrospective institutional review board–approved study. Dual-energy computed tomography angiography data were reconstructed using standard linearly blended M_0.6 (merging 60% low kiloelectron volt [90 kV] with 40% high kiloelectron volt [150 kV] spectrum), traditional (VMI), and advanced VMI (VMI+) algorithms. Monoenergetic series were calculated ranging from 40 to 120 keV with 10 keV increments. Attenuation and standard deviation of 8 arteries and various anatomical landmarks of the thorax and abdomen were measured to calculate contrast-to-noise ratio values. Two radiologists subjectively assessed image quality, contrast conditions, noise, and visualization of small arterial branches using 5-point Likert scales. Results: Vascular attenuation of VMI and VMI+ series showed a gradual increase from high to low kiloelectron volt levels without significant differences between both algorithms (P
Source: Investigative Radiology - Category: Radiology Tags: Original Articles Source Type: research