Abstract LB-C22: Acquired resistance to the cMET inhibitor savolitinib in lung cancer models through EGFR/mTOR/MYC deregulation and adoption of PIM signaling

Lung cancer is the most common cause of cancer death globally with a significant, unmet need for more efficacious treatments. Aberrant receptor tyrosine kinase (RTK) signaling is a well-documented driver of disease onset and progression in multiple cancer types, including non-small cell lung cancer (NSCLC), where the cMET RTK contributes to tumor progression, maintenance and resistance to targeted therapies. Here, we explore the therapeutic potential of the potent and selective cMET inhibitor savolitinib (volitinib, AZD6094, HMPL-504) in NSCLC and begin to elucidate mechanisms of acquired savolitinib resistance in preclinical models. Using in vitro proliferation assays and immunoblot analysis, we determine that savolitinib rapidly inhibits cMET auto-phosphorylation/activation and reduces the viability of NSCLC cell lines NCI-H1993 and EBC-1 with a GI50 of 4.20 nM and 2.14 nM, respectively. In vivo, once daily treatment of NCI-H1993 xenografts with 3.0 mg/kg savolitinib significantly slows tumor growth, whereas treatment of EBC-1 xenografts with 30.0 mg/kg results in tumor stasis. Importantly, we observe tumor regressions in a patient-derived xenograft model of a NSCLC lymph node metastasis, HLXF-036LN, dosed with savolitinib 50.0 mg/kg once daily. Pharmacodynamic analysis of in vitro and in vivo models shows that savolitinib sensitivity correlates with blockade of PI3K/AKT and MAPK signaling, and interestingly, with cMYC (MYC) protein down-regulation. To elucidate mechanisms ...
Source: Molecular Cancer Therapeutics - Category: Cancer & Oncology Authors: Tags: Drug Resistance and Modifiers: Poster Presentations - Proffered Abstracts Source Type: research