Hollow Cu/CoS2 Nanozyme with Defect ‐Induced Enzymatic Catalytic Sites and Binding Pockets for Highly Sensitive Fluorescence Detection of Alkaline Phosphatase

Inspired by active centers of natural enzymes consisting of catalytic sites and binding pockets, a Cu-doped CoS2 hollow nanocube (Cu/CoS2 HNCs) nanozyme integrating substitution defects and vacancies is developed through a defect engineering strategy. The vacancies and substitution defects of the developed Cu/CoS2 HNCs nanozymes can serve as binding pockets and catalytic sites as observed in natural enzymes, respectively. AbstractAlong with an ever-deepening understanding of the catalytic principle of natural enzymes, the rational design of high-activity biomimetic nanozymes has become a hot topic in current research. Inspired by the active centers of natural enzymes consisting of catalytic sites and binding pockets, a Cu-doped CoS2 hollow nanocube (Cu/CoS2 HNCs) nanozyme integrating substitution defects and vacancies is developed through a defect engineering strategy. It is shown that the vacancies and substitution defects in the developed Cu/CoS2 HNC nanozymes serve as binding pockets and catalytic sites, respectively. The construction of this key active center and the accelerated electron transfer from the Co/Cu redox cycle significantly improve the substrate affinity and catalytic efficiency of the Cu/CoS2 HNCs nanozymes, which results in the excellent catalytic performance of the Cu/CoS2 HNC nanozymes. Using the superior enzymatic activity of Cu/CoS2 HNCs, a fluorescence detection platform for alkaline phosphatase (ALP) is established, which is a wider detection range an...
Source: Small - Category: Nanotechnology Authors: Tags: Research Article Source Type: research
More News: Nanotechnology