Variability in intermediate predator hatching does not alter top-down effects of top predators

Canadian Journal of Zoology, Ahead of Print. Variability in phenological shifts (seasonal changes in biological events) has become more common with climate change. As phenological variability increases due to climatic factors, species interactions within diverse communities can be affected. Shifts in hatching phenology can lead to body size variability that can alter species interactions, especially within and across trophic levels in complex food webs. To understand the effects of hatching phenology and food web complexity on prey communities, we conducted an experiment with ectotherms from ponds by manipulating hatching synchrony of a prey species across three dates and food web complexity. We hypothesized that predation on prey would be highest in the lowest synchrony treatment due to predator satiation effects in high synchrony additions. Food webs with top predators present had the lowest survival rates for prey compared to other food webs. Prey size at metamorphosis was also highest in the top predator food webs, suggesting a thinning effect. Hatching synchrony treatments did not have a significant impact on prey survival or size at metamorphosis except in treatments where intermediate and top predators were absent. Overall, our results show that top-down effects of predators may be enough to suppress the influence of phenological shifts in prey.
Source: Canadian Journal of Zoology - Category: Zoology Authors: Source Type: research
More News: Canada Health | Zoology