Progress in microwave absorbing materials: A critical review

Adv Colloid Interface Sci. 2024 Apr 4;327:103143. doi: 10.1016/j.cis.2024.103143. Online ahead of print.ABSTRACTMicrowave-absorbing materials play a significant role in various applications that involve the attenuation of electromagnetic radiation. This critical review article provides an overview of the progress made in the development and understanding of microwave-absorbing materials. The interaction between electromagnetic radiation and absorbing materials is explained, with a focus on phenomena such as multiple reflections, scattering, and polarizations. Additionally, types of losses that affect the performance of microwave absorbers are also discussed, including dielectric loss, conduction loss, relaxation loss, magnetic loss, and morphological loss. Each of these losses has different implications for the effectiveness of microwave absorbers. Further, a detailed review is presented on various types of microwave absorbing materials, including carbonaceous materials, conducting polymers, magnetic materials, metals and their composites, 2D materials (such as MXenes and 2D-transition metal dichalcogenides), biomass-derived materials, carbides, sulphides, phosphides, high entropy (HE) materials and metamaterials. The characteristics, advantages, and limitations of each material are examined. Overall, this review article highlights the progress achieved in the field of microwave-absorbing materials. It underlines the importance of optimizing different types of losses to enhan...
Source: Advances in Colloid and Interface Science - Category: Chemistry Authors: Source Type: research
More News: Chemistry | Science