Confined-Coordination Induced Intergrowth of Metal-Organic Framework into Precise Molecular Sieving Membranes

Angew Chem Int Ed Engl. 2024 Apr 12:e202405676. doi: 10.1002/anie.202405676. Online ahead of print.ABSTRACTMetal-organic framework (MOF) membranes with rich functionality and tunable pore system are promising for precise molecular separation; however, it remains a challenge to develop defect-free high-connectivity MOF membrane with high water stability owing to uncontrollable nucleation and growth rate during fabrication process. Herein, we report on a confined-coordination induced intergrowth strategy to fabricate lattice-defect-free Zr-MOF membrane towards precise molecular separation. The confined-coordination space properties (size and shape) and environment (water or DMF) were regulated to slow down the coordination reaction rate via controlling the counter-diffusion of MOF precursors (metal cluster and ligand), thereby inter-growing MOF crystals into integrated membrane. The resulting Zr-MOF membrane with angstrom-sized lattice apertures exhibits excellent separation performance both for gas separation and water desalination process. It was achieved H2 permeance of ~1200 GPU and H2/CO2 selectivity of ~67; water permeance of ~8 L·m-2·h-1·bar-1 and MgCl2 rejection of ~95%, which are one to two orders of magnitude higher than those of state-of-the-art membranes. The molecular transport mechanism related to size-sieving effect and transition energy barrier differential of molecules and ions was revealed by density functional theory calculations. Our work provides a facil...
Source: Angewandte Chemie - Category: Chemistry Authors: Source Type: research