A low-cost phantom design for evaluating spine SABR calculations in the presence of prosthetic vertebral stabilization

We present an initial design for a low-cost phantom to evaluate spine stereotactic ablative radiotherapy (SABR) in the presence of prosthetic vertebral stabilization. The phantom is modular, allowing the prosthetic at the centre of the phantom to be removed by exchanging the central block. It also includes space to insert ion chamber and film. The agreement of the RayStation TPS (v8.0B) collapsed cone convolution (CCC) calculation and measurement was determined for phantom versions with and without prosthetic. There was little to no change in the agreement between the measured and calculated dose when introducing metallic hardware. This suggests that our Raystation-based SABR planning approach for patients with spinal hardware meets clinical expectations. Departments without access to anthropomorphic phantoms may find this design useful but should test their phantom design in typical clinical settings to ensure it is robust to real world situations.
Source: Australasian Physical and Engineering Sciences in Medicine - Category: Biomedical Engineering Source Type: research