Systematic optimization of automated phosphopeptide enrichment for high-sensitivity phosphoproteomics

Mol Cell Proteomics. 2024 Mar 26:100754. doi: 10.1016/j.mcpro.2024.100754. Online ahead of print.ABSTRACTImproving coverage, robustness and sensitivity is crucial for routine phosphoproteomics analysis by single-shot liquid chromatography tandem mass spectrometry (LC-MS/MS) from minimal peptide inputs. Here, we systematically optimized key experimental parameters for automated on-beads phosphoproteomics sample preparation with focus on low input samples. Assessing the number of identified phosphopeptides, enrichment efficiency, site localization scores and relative enrichment of multiply-phosphorylated peptides pinpointed critical variables influencing the resulting phosphoproteome. Optimizing glycolic acid concentration in the loading buffer, percentage of ammonium hydroxide in the elution buffer, peptide-to-beads ratio, binding time, sample and loading buffer volumes, allowed us to confidently identify >16,000 phosphopeptides in half-an-hour LC-MS/MS on an Orbitrap Exploris 480 using 30 μg of peptides as starting material. Furthermore, we evaluated how sequential enrichment can boost phosphoproteome coverage and showed that pooling fractions into a single LC-MS/MS analysis increased the depth. We also present an alternative phosphopeptide enrichment strategy based on stepwise addition of beads thereby boosting phosphoproteome coverage by 20%. Finally, we applied our optimized strategy to evaluate phosphoproteome depth with the Orbitrap Astral MS using a cell dilution se...
Source: Molecular and Cellular Proteomics : MCP - Category: Molecular Biology Authors: Source Type: research