Unraveling the forces shaping foraging dynamics in harvester ant colonies: Recruitment efficiency and environmental variability

Math Biosci. 2024 Mar 22;371:109182. doi: 10.1016/j.mbs.2024.109182. Online ahead of print.ABSTRACTThe collective foraging behavior of ant colonies is a central focus in behavioral ecology. This paper enhances the classical model of foraging dynamics in harvester ant colonies by introducing a nonlinear recruitment rate and considering environmental variability. Initially, we analyze the existence and stability of steady states in the deterministic model. The results suggest that an increase in mean recruitment time can reduce the foraging threshold, leading to both forward and backward bifurcations. Furthermore, both average recruitment time and the interference intensity of recruiters impact the number of workers in each subgroup. Subsequently, we conduct an analysis of the long-term and transient dynamics of collective foraging in random environments, providing sufficient conditions for the colony to sustain foraging activity. The findings emphasize the scene-dependent impact of environmental stochasticity on foraging dynamics. When ant colonies deterministically cease foraging, environmental stochasticity may unexpectedly prolong the foraging state. Conversely, when colonies deterministically persist in foraging, environmental stochasticity may disrupt this continuity. Additionally, the effect of environmental stochasticity on foraging status varies with the initial worker size. Sizes near the boundary of the basin of attraction between non-foraging and foraging states exh...
Source: Mathematical Biosciences - Category: Statistics Authors: Source Type: research