Explorative study using ultrasound time-harmonic elastography for stiffness-based quantification of skeletal muscle function

Z Med Phys. 2024 Mar 19:S0939-3889(24)00027-8. doi: 10.1016/j.zemedi.2024.03.001. Online ahead of print.ABSTRACTTime-harmonic elastography (THE) is an emerging ultrasound imaging technique that allows full-field mapping of the stiffness of deep biological tissues. THE's unique ability to rapidly capture stiffness in multiple tissues has never been applied for imaging skeletal muscle. Therefore, we addressed the lack of data on temporal changes in skeletal muscle stiffness while simultaneously covering stiffness of different muscles. Acquiring repeated THE scans every five seconds we quantified shear-wave speed (SWS) as a marker of stiffness of the long head (LHB) and short head (SHB) of biceps brachii and of the brachialis muscle (B) in ten healthy volunteers. SWS was continuously acquired during a 3-min isometric preloading phase, a 3-min loading phase with different weights (4, 8, and 12 kg), and a 9-min postloading phase. In addition, we analyzed temporal SWS standard deviation (SD) as a marker of muscle contraction regulation. Our results (median [min, max]) showed both SWS at preloading (LHB: 1.04 [0.94, 1.12] m/s, SHB: 0.86 [0.78, 0.94] m/s, B: 0.96 [0.87, 1.09] m/s, p < 0.001) and the increase in SWS with loading weight to be muscle-specific (LHB: 0.010 [0.002, 0.019] m/s/kg, SHB: 0.022 [0.017, 0.042] m/s/kg, B: 0.039 [0.019, 0.062] m/s/kg, p < 0.001). Additionally, SWS during loading increased continuously over time by 0.022 [0.004, 0.051] m/s/min (p < 0.01)....
Source: Zeitschrift fur Medizinische Physik - Category: Radiology Authors: Source Type: research