Development and characterization of 3D printed ethylene vinyl acetate (EVA) as drug delivery device for the treatment of overactive bladder

Drug Dev Ind Pharm. 2024 Mar 14:1-12. doi: 10.1080/03639045.2024.2311177. Online ahead of print.ABSTRACTThe overactive bladder is a condition characterized by a sudden urge to urinate, even with small volumes of urine present in the bladder. The current treatments available for this pathology consist on conservative approaches and the continuous administration of drugs, which when made by conventional methods has limitations related to the first pass metabolism, bioavailability, severe side effects, and low patient adherence to treatments, ultimately leading to low effectiveness. Within this context, the present work proposes the design, manufacture, and characterization of an intravesical implant for the treatment of overactive bladder pathology, using EVA copolymer as a matrix and oxybutynin as a drug. The fabrication of devices through two manufacturing techniques (extrusion and additive manufacturing by fused filament fabrication, FFF) and the evaluation of the implants through characterization tests was proposed. The usability and functionality were evaluated through simulated insertion of the device/prototype in a bladder model through catheter insertion tests. The safety and effectiveness of the devices was investigated from mechanical testing as well as drug release assays. Drug release assays presented a burst release in the first 24 h, followed by a release of 1.8 and 2.8 mg/d, totalizing 32 d. Mechanical tests demonstrated an increase in the stiffness of the specim...
Source: Drug Development and Industrial Pharmacy - Category: Drugs & Pharmacology Authors: Source Type: research