Continuous ultrasonic ozone coupling technology-assisted control of ceramic membrane fouling coupled enhanced multiphase mixing to treat dye wastewater and CFD flow field simulation

In this study, ozone catalysts (hydrogenation-modified red mud, HM-RM) successfully prepared by hydrogenation-modification of industrial hazardous solid waste red mud (RM) as a raw material in accordance with the viewpoint of treating waste with waste and using waste. Meanwhile, as for the common phenomenon of membrane fouling, uneven distribution of multiphase solid catalysts and ozone in liquids, the addition of ultrasound can not only disperse materials, but also play a role in online cleaning of ceramic membranes and catalysts. The optimum treatment conditions for Rhodamine B (RhB) solution with volume of 2 L and concentration of 40 mg/L were catalyst concentration of 0.4 mg/L, reaction temperature of 45 °C, ultrasonic time of 1 h, ultrasonic intensity of 600 W, removal rate of RhB was up to 90 %. In addition, the computational fluid dynamics (CFD) simulation method was used to investigate the fluid flow between the two gas-liquid phases and the effect of the negative pressure of the membrane pump on the fluid by the analysis of flow, pressure and ozone flux of the ceramic membrane(CM) reaction apparatus. The CFD simulation results showed that at the inlet gas-liquid flow rate of 3 m/s and the negative pressure of 20,000 Pa, the maximum flow rates of CM-1 were 3 m/s, 0.752 m/s for CM-2, and 0.228 m/s for CM-3, respectively. Vortices, which are beneficial to solid-liquid mixing and gas-liquid mass transfer, formed between the suction port CM-1 of CM-1 and the inlets of CM...
Source: Ultrasonics Sonochemistry - Category: Chemistry Authors: Source Type: research
More News: Chemistry | Study | Ultrasound