Single-molecule FRET probes allosteric effects on protein-translocating pore loops of a AAA+ machine

Biophys J. 2024 Feb 6;123(3):374-388. doi: 10.1016/j.bpj.2024.01.002. Epub 2024 Jan 9.ABSTRACTAAA+ proteins (ATPases associated with various cellular activities) comprise a family of powerful ring-shaped ATP-dependent translocases that carry out numerous vital substrate-remodeling functions. ClpB is a AAA+ protein disaggregation machine that forms a two-tiered hexameric ring, with flexible pore loops protruding into its center and binding to substrate proteins. It remains unknown whether these pore loops contribute only passively to substrate-protein threading or have a more active role. Recently, we have applied single-molecule FRET spectroscopy to directly measure the dynamics of substrate-binding pore loops in ClpB. We have reported that the three pore loops of ClpB (PL1-3) undergo large-scale fluctuations on the microsecond timescale that are likely to be mechanistically important for disaggregation. Here, using single-molecule FRET, we study the allosteric coupling between the pore loops and the two nucleotide-binding domains of ClpB (NBD1-2). By mutating the conserved Walker B motifs within the NBDs to abolish ATP hydrolysis, we demonstrate how the nucleotide state of each NBD tunes pore-loop dynamics. This effect is surprisingly long-ranged; in particular, PL2 and PL3 respond differentially to a Walker B mutation in either NBD1 or NBD2, as well as to mutations in both. We characterize the conformational dynamics of pore loops and the allosteric paths connecting NBDs to...
Source: Biophysical Journal - Category: Physics Authors: Source Type: research
More News: Physics | Study