Chemovoltaic effect for renewable liquid and vapor fuels on semiconductor surfaces

ChemSusChem. 2024 Feb 2:e202301522. doi: 10.1002/cssc.202301522. Online ahead of print.ABSTRACTThe chemovoltaic effect - generation of electronic excitation by exergonic redox reactions - has been observed on metallic surfaces of Schottky junctions and is proving to be pivotal in explaining in detail the momentum conservation relations of chemically active collisions. As shown in this work, it can hold keys for direct chemical energy harvesting by semiconductor solar cells. To study the possibilities of chemovoltaic energy conversion by semiconductors, we have modeled and designed an 'electrolyte-free fuel cell' formed by a GaAs diode that can host electrochemical fuel oxidation and oxidant reduction reactions on its conduction and valence bands and as a result convert renewable chemical energy (as well as light) into electricity. The experimental results show that exposing the surface of a suitably designed solar cell to methanol liquid or vapor in the presence of oxygen or hydrogen peroxide leads to the generation of electrical power.PMID:38305144 | DOI:10.1002/cssc.202301522
Source: ChemSusChem - Category: Chemistry Authors: Source Type: research
More News: Chemistry | Study