Unsupervised Neural Manifold Alignment for Stable Decoding of Movement from Cortical Signals

Int J Neural Syst. 2023 Dec 6:2450006. doi: 10.1142/S0129065724500060. Online ahead of print.ABSTRACTThe stable decoding of movement parameters using neural activity is crucial for the success of brain-machine interfaces (BMIs). However, neural activity can be unstable over time, leading to changes in the parameters used for decoding movement, which can hinder accurate movement decoding. To tackle this issue, one approach is to transfer neural activity to a stable, low-dimensional manifold using dimensionality reduction techniques and align manifolds across sessions by maximizing correlations of the manifolds. However, the practical use of manifold stabilization techniques requires knowledge of the true subject intentions such as target direction or behavioral state. To overcome this limitation, an automatic unsupervised algorithm is proposed that determines movement target intention before manifold alignment in the presence of manifold rotation and scaling across sessions. This unsupervised algorithm is combined with a dimensionality reduction and alignment method to overcome decoder instabilities. The effectiveness of the BMI stabilizer method is represented by decoding the two-dimensional (2D) hand velocity of two rhesus macaque monkeys during a center-out-reaching movement task. The performance of the proposed method is evaluated using correlation coefficient and R-squared measures, demonstrating higher decoding performance compared to a state-of-the-art unsupervised BMI ...
Source: International Journal of Neural Systems - Category: Neurology Authors: Source Type: research
More News: Brain | Neurology