A user's guide to the bioinformatic analysis of shotgun metagenomic sequence data for bacterial pathogen detection

Int J Food Microbiol. 2023 Nov 17;410:110488. doi: 10.1016/j.ijfoodmicro.2023.110488. Online ahead of print.ABSTRACTMetagenomics, i.e., shotgun sequencing of the total microbial community DNA from a sample, has become a mature technique but its application to pathogen detection in clinical, environmental, and food samples is far from common or standardized. In this review, we summarize ongoing developments in metagenomic sequence analysis that facilitate its wider application to pathogen detection. We examine theoretical frameworks for estimating the limit of detection for a particular level of sequencing effort, current approaches for achieving species and strain analytical resolution, and discuss some relevant modern tools for these tasks. While these recent advances are significant and establish metagenomics as a powerful tool to provide insights not easily attained by culture-based approaches, metagenomics is unlikely to emerge as a widespread, routine monitoring tool in the near future due to its inherently high detection limits, cost, and inability to easily distinguish between viable and non-viable cells. Instead, metagenomics seems best poised for applications involving special circumstances otherwise challenging for culture-based and molecular (e.g., PCR-based) approaches such as the de novo detection of novel pathogens, cases of co-infection by more than one pathogen, and situations where it is important to assess the genomic composition of the pathogenic population...
Source: International Journal of Food Microbiology - Category: Food Science Authors: Source Type: research