Monitoring Active Patient Participation During Robotic Rehabilitation: Comparison Between a Robot-Based Metric and an EMG-Based Metric

While rehabilitation robots present a much-needed solution to improving early mobilization therapy in demanding clinical settings, they also present new challenges and opportunities in patient monitoring. Aside from the fundamental challenge of quantifying a patient’s voluntary contribution during robot-led therapy motion, many sensors cannot be used in clinical settings due to time and space limitations. In this paper, we present and compare two metrics for monitoring a patient’s active participation in the motion. The two metrics, each derived from first principles, have the same biomechanical interpretability, i.e., active work by the patient during the robotic mobilization therapy, but are calculated in two different spaces (Cartesian vs. muscle space). Furthermore, the sensors used to quantify these two metrics are fully independent from each other and the associated measurements are unrelated. Specifically, the robot-based work metric utilizes robot-integrated force sensors, while the EMG-based work metric requires electrophysiological sensors. We then apply the two metrics to therapy performed using a clinically certified, commercially available robotic system and compare them against the specific instructions given to the healthy subjects as well as against each other. Both metric outputs qualitatively match the expected behavior of the healthy subjects. Additionally, strong correlations (median $R^{2}\gt 0.80$ ) are shown between the two metrics, not only for hea...
Source: IEE Transactions on Neural Systems and Rehabilitation Engineering - Category: Neuroscience Source Type: research