Non-contact high precision pulse-rate monitoring system for moving subjects in different motion states

AbstractRemote photoplethysmography (rPPG) enables contact-free monitoring of the pulse rate by using a color camera. The fundamental limitation is that motion artifacts and changes in ambient light conditions greatly affect the accuracy of pulse-rate monitoring. We propose use of a high-speed camera and a motion suppression algorithm with high computational efficiency. This system incorporates a number of major improvements including reproduction of pulse wave details, high-precision pulse-rate monitoring of moving subjects, and excellent scene scalability. A series of quantization methods were used to evaluate the effect of different frame rates and different algorithms in pulse-rate monitoring of moving subjects. The experimental results show that use of 180-fps video and a Plane-Orthogonal-to-Skin (POS) algorithm can produce high-precision pulse-rate monitoring results with mean absolute error can be less than 5 bpm and the relative accuracy reaching 94.5%. Thus, it has significant potential to improve personal health care and intelligent health monitoring.Graphical Abstract
Source: Medical and Biological Engineering and Computing - Category: Biomedical Engineering Source Type: research