Variation in environmental stochasticity dramatically affects viability and extinction time in a predator-prey system with high prey group cohesion

Math Biosci. 2023 Sep 19:109075. doi: 10.1016/j.mbs.2023.109075. Online ahead of print.ABSTRACTUnderstanding how tipping points arise is critical for population protection and ecosystem robustness. This work evaluates the impact of environmental stochasticity on the emergence of tipping points in a predator-prey system subject to the Allee effect and Holling type IV functional response, modelling an environment in which the prey has high group cohesion. We analyze the relationship between stochasticity and the probability and time that predator and prey populations in our model tip between different steady states. We evaluate the safety from extinction of different population values for each species, and accordingly assign extinction warning levels to these population values. Our analysis suggests that the effects of environmental stochasticity on tipping phenomena are scenario-dependent but follow a few interpretable trends. The probability of tipping towards a steady state in which one or both species go extinct generally monotonically increased with noise intensity, while the probability of tipping towards a more favourable steady state (in which more species were viable) usually peaked at intermediate noise intensity. For tipping between two equilibria where a given species was at risk of extinction in one equilibrium but not the other, noise affecting that species had greater impact on tipping probability than noise affecting the other species. Noise in the predator popu...
Source: Mathematical Biosciences - Category: Statistics Authors: Source Type: research