Harnessing the Peterson Reaction for the Stereospecific Synthesis of Z-Vinyl Ethers

Chemistry. 2023 Sep 21:e202302708. doi: 10.1002/chem.202302708. Online ahead of print.ABSTRACTVinyl ethers are valuable synthetic intermediates which are also found as natural products, including aflatoxins, rifamycins and plasmalogens. The latter are ubiquitous phospholipids in human cells and contain a vinyl ether moiety with specifically Z configuration. Although numerous methods are available for synthesis of vinyl ethers, there is a lack of methods for obtaining Z isomers of molecules of the type RCH=CHOR' that are applicable to plasmalogens. A variant of the Peterson reaction is described that generates such molecules with very high stereoselectivity (Z/E ratio: 99:1). (R,R)/(S,S)-1-alkoxy-2-hydroxyalkylsilanes were synthesised from 1-trimethylsilylalkynes by a sequence of reduction with di-isobutylaluminium hydride to a (Z)-1-trimethylsilylalkene, epoxidation of the alkene to a 2-trimethylsilyl-3-substituted epoxide and regioselective, boron-trifluoride catalysed ring opening of the epoxide by reaction with an alcohol. Conversion of the (R,R)/(S,S)-1-alkoxy-2-hydroxyalkylsilanes to vinyl ethers (RCH=CHOR') was achieved under basic conditions as in a standard Peterson reaction. However, near exclusive formation of a Z vinyl ether was only achieved when the reaction was performed using potassium hydride in the non-polar solvent α,α,α-trifluorotoluene, more polar solvents giving increasing amounts of the E isomer. The sequence described embraces a variety of substituen...
Source: Chemistry - Category: Chemistry Authors: Source Type: research