Development of a novel green catalyzed nanostructured Cu(II) macrocyclic complex-based disposable electrochemical sensor for sensitive detection of bisphenol A in environmental samples

Environ Pollut. 2023 Aug 21:122420. doi: 10.1016/j.envpol.2023.122420. Online ahead of print.ABSTRACTBPA is an endocrine disruptor and the leading environmental pollutant due to its use as raw material in industries. Therefore, the present work reports the sensitive, efficient, and disposable electrochemical paper-based SPE for determining the BPA sensor using an amide-based macrocyclic complex (nanostructured complex of copper acetate with macrocyclic ligand, i.e., CuL (CH3COO)2) synthesized using Citrus limon (lemon) extract via sonication for the first time. The structural, morphological, and electrochemical analyses have been characterized by mass spectroscopy, FTIR, UV-Vis, XRD, FESEM-EDX, elemental mapping and electrochemical techniques. The sensor platform for detecting BPA was fabricated by simple drop-casting on the disposable paper-based SPE using macrocyclic complex, i.e., CuL (CH3COO)2/SPE. After optimizing the conditions, CuL (CH3COO)2/SPE electrode was employed for determining BPA via CV with a wide linear range of 31 × 10-9 μM-0.205 μM, low LOD of 0.027 nM, and high sensitivity of 49.71 μA (log nM)-1 cm-2 having correlation coefficient (R2) of 0.976 which is quite better in compared to other reported SPE sensor for detection of BPA. Further, our sensor also showed good selectivity and reproducibility, in addition to detecting BPA in environmental samples (tube well water, river water and drain water) with acceptable recoveries and RSDs values. In this work,...
Source: Environmental Pollution - Category: Environmental Health Authors: Source Type: research