Exploration of curcumin-incorporated dual anionic alginate-quince seed gum films for transdermal drug delivery

Int J Biol Macromol. 2023 Jul 11:125798. doi: 10.1016/j.ijbiomac.2023.125798. Online ahead of print.ABSTRACTThe idea of combining bioextracted polymers for wound healing applications has emerged in hopes of developing highly flexible and mechanically stable hydrogel films with controlled drug delivery, biocompatibility, and high collagen deposition. In the present research, polysaccharide films composed of Alginate and Quince Seed Gum (QSG) were fabricated by ionic crosslinking, and their potential for curcumin delivery and wound healing were examined. In this regard, microstructure, mechanical properties, thermal stability, physiochemical properties, and biocompatibility of films with three different QSG amounts (25 %, 50 %, and 75 %) were studied. Because of the optimum properties of 25 % QSG films like better transparency (Opacity = 6.1 %), higher flexibility (Elongation = 28.9 %), less water solubility (Water solubility = 66.6 %), proper absorbance (Swelling degree = >600 %), and suitable biocompatibility (Cell viability = >85 %), they were used for drug delivery examination. Curcumin administration through films with and without stearic acid modification was investigated. Stearic Acid (SA) modified samples demonstrated superior compatibility between hydrophobic drug and hydrophilic film. Stearic acid-modified film could prolong the curcumin release up to 48 h and showed increased collagen synthesis and TGF-β expression, making it an excellent candidate for transde...
Source: International Journal of Biological Macromolecules - Category: Biochemistry Authors: Source Type: research