Endothelial sphingosine kinase/SPNS2 axis is critical for vessel-like formation by human mesoangioblasts

In this study, we aimed to identify the role of S1P axis in the intercellular communication between human mesenchymal progenitor mesoangioblasts (MAB) and endothelial cells (human microvascular endothelial cells (H-MVEC)) in the formation of capillary-like structures. We demonstrated that the S1P biosynthetic pathway brought about by sphingosine kinases (SK) SK1 and SK2 as well as spinster homolog 2 (SPNS2) transporter in H-MVEC is crucial for MAB migration measured by Boyden chambers and for the formation and stabilization of capillary-like structures in a 3D Matrigel culture. Moreover, the conditioned medium (CM) harvested from H-MVEC, where SK1, SK2, and SPNS2 were down-regulated, exerted a significantly diminished effect on MAB capillary morphogenesis and migration. Notably, we demonstrated that S1P1 and S1P3 receptors were positively involved in CM-induced capillary-like formation and migration, while S1P2 exerted a negative role on CM-induced migratory action of MAB. Finally, SK inhibition as well as MAB S1P1 and S1P3 down-regulation impaired H-MVEC-MAB cross-talk significantly reducing in vivo angiogenesis evaluated by Matrigel plug assay. These findings individuate novel targets for the employment of MAB in vascular-related pathologic conditions. Key message • Down-regulation of SK1/2 in H-MVEC impaired vessel formation when cultured with MAB. • H-MVEC SPNS2 is criti...
Source: Journal of Molecular Medicine - Category: Molecular Biology Source Type: research