Bio-waste-derived-hard carbon anodes through a sustainable and cost-effective synthesis process for Sodium-ion batteries

ChemSusChem. 2022 Oct 17. doi: 10.1002/cssc.202201713. Online ahead of print.ABSTRACTSodium-ion batteries (SIBs) are postulated as sustainable energy storage devices for light electromobility and stationary applications. The anode of choice in SIBs is hard carbon (HC) due to its electrochemical performance. Among different HC precursors, bio-waste resources have attracted significant attention due to their low-cost, abundance, and sustainability. Many bio-waste materials have been used as HC precursors, but they often require strong acids/bases for pre-/post-treatment for HC development. Here, the morphology, microstructure, and electrochemical performance of HCs synthesized from hazelnut shells subjected to different pre-treatments ( i.e. , no pretreatment, acid treatment, and water washing) are compared. The impact on the electrochemical performance of sodium-ion cells and the cost-effectiveness are also investigated. The results reveal that hazelnut-shell derived-HCs produced via simple water washing outperform those obtained via other processing methods in terms of electrochemical performance and cost-ecological-effectiveness of a sodium-ion battery pack.PMID:36245279 | DOI:10.1002/cssc.202201713
Source: ChemSusChem - Category: Chemistry Authors: Source Type: research
More News: Chemistry | Hazelnuts | Sodium