Filtered By:
Specialty: Cancer & Oncology
Condition: Schizophrenia

This page shows you your search results in order of date.

Order by Relevance | Date

Total 2 results found since Jan 2013.

Abstract 4360: Validation of phosphodiesterase 10A as a cancer target
Phosphodiesterase 10A (PDE10) is a cAMP and cGMP degrading PDE isozyme that is highly expressed in the brain striatum where it plays an important role in cognition and psychomotor activity. PDE10 inhibitors are being developed for the treatment of schizophrenia and Huntington's disease and are generally well tolerated, likely because of low expression levels in peripheral tissues. We recently reported high levels of PDE10 in tumors and that genetic silencing by siRNA inhibits tumor cell growth with a high degree of selectivity over normal cells (Li et al., Oncogene 2014). These observations suggest that PDE10 may have an u...
Source: Cancer Research - August 2, 2015 Category: Cancer & Oncology Authors: Lee, K., Li, N., Chen, X., Zhu, B., Yet, L., Madeira da Silva, L., Russo, S., Keeton, A. B., Boyd, M. R., Piazza, G. A. Tags: Experimental and Molecular Therapeutics Source Type: research

Abstract 1762: Phosphodiesterase 10, a novel target for colorectal cancer therapeutics
Phosphodiesterase 10 (PDE10) is a newly characterized PDE isozyme that is expressed in regions of the brain affecting cognition and psychomotor activity. Inhibitors are currently being developed for the treatment of schizophrenia and Huntington's disease, one of which, Pf-2545920 (MP-10), is in clinical trials. Although PDE10 is not expressed in most peripheral tissues, we recently found high levels in colon tumor cells compared with normal colonocytes and that genetic silencing by siRNA selectively suppressed colon tumor cell growth. These observations suggest that PDE10 may represent a novel anticancer target. Pf-2545920...
Source: Cancer Research - September 30, 2014 Category: Cancer & Oncology Authors: Lee, K. J., Li, N., Chen, X., Zhu, B., Yet, L., Piazza, G. Tags: Experimental and Molecular Therapeutics Source Type: research