Filtered By:
Source: Neurochemical Research
Nutrition: Calcium

This page shows you your search results in order of relevance.

Order by Relevance | Date

Total 8 results found since Jan 2013.

Inhibition of Calcium/Calmodulin-Dependent Protein Kinase II α Suppresses Oxidative Stress in Cerebral Ischemic Rats Through Targeting Glucose 6-Phosphate Dehydrogenase.
Inhibition of Calcium/Calmodulin-Dependent Protein Kinase IIα Suppresses Oxidative Stress in Cerebral Ischemic Rats Through Targeting Glucose 6-Phosphate Dehydrogenase. Neurochem Res. 2019 Mar 27;: Authors: Wei Y, Wang R, Teng J Abstract Ischemic stroke is a leading cause of mortality and morbidity worldwide, and oxidative stress plays a significant role in the ischemia stage and reperfusion stage. Previous studies have indicated that both calcium/calmodulin-dependent protein kinase II (CaMKII) and glucose 6-phosphate dehydrogenase (G6PD) are involved in the oxidative stress. Thus, the aim of this st...
Source: Neurochemical Research - March 26, 2019 Category: Neuroscience Authors: Wei Y, Wang R, Teng J Tags: Neurochem Res Source Type: research

Retinoic Acid Prevents the Neuronal Damage Through the Regulation of Parvalbumin in an Ischemic Stroke Model
In conclusion, retinoic acid contributes to the preservation of neurons from ischemic stroke by controlling parvalbumin expression and apoptosis-related proteins.PMID:36245066 | DOI:10.1007/s11064-022-03769-9
Source: Neurochemical Research - October 16, 2022 Category: Neuroscience Authors: Ju-Bin Kang Dong-Ju Park Phil-Ok Koh Source Type: research