Filtered By:
Source: Molecular Neurobiology
Condition: Mitochondrial Disease
Education: Study

This page shows you your search results in order of date.

Order by Relevance | Date

Total 4 results found since Jan 2013.

Investigation of Mitochondrial Related Variants in a Cerebral Small Vessel Disease Cohort
AbstractMonogenic forms of cerebral small vessel disease (CSVD) can be caused by both variants in nuclear DNA and mitochondrial DNA (mtDNA). Mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) is known to have a phenotype similar to Cerebral Autosomal Dominant Arteriopathy with Sub-cortical Infarcts and Leukoencephalopathy (CADASIL), and can be caused by variants in the mitochondrial genome and in several nuclear-encoded mitochondrial protein (NEMP) genes. The aim of this study was to screen for variants in the mitochondrial genome and NEMP genes in aNOTCH3-negative CADASIL cohort, to identify a...
Source: Molecular Neurobiology - August 25, 2022 Category: Neurology Source Type: research

Mitochondrial Quality and Quantity Control: Mitophagy Is a Potential Therapeutic Target for Ischemic Stroke
AbstractIschemic stroke is a cerebrovascular disease with high mortality and disability, which seriously affects the health and lives of people around the world. Effective treatment for ischemic stroke has been limited by its complex pathological mechanisms. Increasing evidence has indicated that mitochondrial dysfunction plays an essential role in the occurrence, development, and pathological processes of ischemic stroke. Therefore, strict control of the quality and quantity of mitochondria via mitochondrial fission and fusion as well as mitophagy is beneficial to the survival and normal function maintenance of neurons. U...
Source: Molecular Neurobiology - March 9, 2022 Category: Neurology Source Type: research

Cofilin Inhibition Restores Neuronal Cell Death in Oxygen–Glucose Deprivation Model of Ischemia
Abstract Ischemia is a condition associated with decreased blood supply to the brain, eventually leading to death of neurons. It is associated with a diverse cascade of responses involving both degenerative and regenerative mechanisms. At the cellular level, the changes are initiated prominently in the neuronal cytoskeleton. Cofilin, a cytoskeletal actin severing protein, is known to be involved in the early stages of apoptotic cell death. Evidence supports its intervention in the progression of disease states like Alzheimer’s and ischemic kidney disease. In the present study, we have hypothesized the possible i...
Source: Molecular Neurobiology - December 20, 2014 Category: Neurology Source Type: research