Filtered By:
Source: Molecular Neurobiology
Condition: Spinal Cord Injury
Education: Study

This page shows you your search results in order of date.

Order by Relevance | Date

Total 3 results found since Jan 2013.

Ferrostatin-1 Alleviates White Matter Injury Via Decreasing Ferroptosis Following Spinal Cord Injury
AbstractSpinal cord injury (SCI), a devastating neurological impairment, usually imposes a long-term psychological stress and high socioeconomic burden for the sufferers and their family. Recent researchers have paid arousing attention to white matter injury and the underlying mechanism following SCI. Ferroptosis has been revealed to be associated with diverse diseases including stroke, cancer, and kidney degeneration. Ferrostatin-1, a potent inhibitor of ferroptosis, has been illustrated to curb ferroptosis in neurons, subsequently improving functional recovery after traumatic brain injury (TBI) and SCI. However, the role...
Source: Molecular Neurobiology - October 12, 2021 Category: Neurology Source Type: research

Exosomes in Acquired Neurological Disorders: New Insights into Pathophysiology and Treatment
AbstractExosomes are endogenous nanovesicles that play critical roles in intercellular signaling by conveying functional genetic information and proteins between cells. Exosomes readily cross the blood-brain barrier and have promise as therapeutic delivery vehicles that have the potential to specifically deliver molecules to the central nervous system (CNS). This unique feature also makes exosomes attractive as biomarkers in diagnostics, prognostics, and therapeutics in the context of multiple significant public health conditions, including acquired neurological disorders. The purpose of this review is to summarize the sta...
Source: Molecular Neurobiology - October 26, 2018 Category: Neurology Source Type: research

MMP-12, a Promising Therapeutic Target for Neurological Diseases
AbstractThe role of matrix metalloproteinase-12 (MMP-12) in the pathogenesis of several inflammatory diseases such as chronic obstructive pulmonary disease, emphysema, and asthma is well established. Several new studies and recent reports from our laboratory and others highlighted the detrimental role of MMP-12 in the pathogenesis of several neurological diseases. In this review, we discuss in detail the pathological role of MMP-12 and the possible underlying molecular mechanisms that contribute to disease pathogenesis in the context of central nervous system diseases such as stroke, spinal cord injury, and multiple sclero...
Source: Molecular Neurobiology - February 1, 2017 Category: Neurology Source Type: research