A transgenic mouse model for HLA-B*57:01–linked abacavir drug tolerance and reactivity
Adverse drug reactions (ADRs) are a major obstacle to drug development, and some of these, including hypersensitivity reactions to the HIV reverse transcriptase inhibitor abacavir (ABC), are associated with HLA alleles, particularly HLA-B*57:01. However, not all HLA-B*57:01+ patients develop ADRs, suggesting that in addition to the HLA genetic risk, other factors may influence the outcome of the response to the drug. To study HLA-linked ADRs in vivo, we generated HLA-B*57:01–Tg mice and show that, although ABC activated Tg mouse CD8+ T cells in vitro in a HLA-B*57:01–dependent manner, the drug was tolerated in ...
Source: Journal of Clinical Investigation - May 22, 2018 Category: Biomedical Science Authors: Marco Cardone, Karla Garcia, Mulualem E. Tilahun, Lisa F. Boyd, Sintayehu Gebreyohannes, Masahide Yano, Gregory Roderiquez, Adovi D. Akue, Leslie Juengst, Elliot Mattson, Suryatheja Ananthula, Kannan Natarajan, Montserrat Puig, David H. Margulies, Michael Source Type: research

Lymph node fibrosis: a structural barrier to unleashing effective vaccine immunity
There is marked variability in vaccine efficacy among global populations. In particular, individuals in low- to middle-income countries have been shown to be less responsive to vaccines than those from developed nations. Several factors, including endemic infections, nutrition, genetics, and gut microbiome composition, have been proposed to underlie discrepancies in vaccine response. In this issue of the JCI, Kityo et al. evaluated response to yellow fever virus vaccine, inflammation, and lymphatic tissue architecture and fibrosis in three cohorts: two from the U.S. and one from Uganda. Compared with the U.S. subjects, the...
Source: Journal of Clinical Investigation - May 22, 2018 Category: Biomedical Science Authors: Boris Julg, Galit Alter Source Type: research

Lymphoid tissue fibrosis is associated with impaired vaccine responses
Vaccine responses vary by geographic location. We have previously described how HIV-associated inflammation leads to fibrosis of secondary lymph nodes (LNs) and T cell depletion. We hypothesized that other infections may cause LN inflammation and fibrosis, in a process similar to that seen in HIV infection, which may lead to T cell depletion and affect vaccine responses. We studied LNs of individuals from Kampala, Uganda, before and after yellow fever vaccination (YFV) and found fibrosis in LNs that was similar to that seen in HIV infection. We found blunted antibody responses to YFV that correlated to the amount of LN fib...
Source: Journal of Clinical Investigation - May 22, 2018 Category: Biomedical Science Authors: Cissy Kityo, Krystelle Nganou Makamdop, Meghan Rothenberger, Jeffrey G. Chipman, Torfi Hoskuldsson, Gregory J. Beilman, Bartosz Grzywacz, Peter Mugyenyi, Francis Ssali, Rama S. Akondy, Jodi Anderson, Thomas E. Schmidt, Thomas Reimann, Samuel P. Callisto, Source Type: research

The NOTCH1/CD44 axis drives pathogenesis in a T cell acute lymphoblastic leukemia model
NOTCH1 is a prevalent signaling pathway in T cell acute lymphoblastic leukemia (T-ALL), but crucial NOTCH1 downstream signals and target genes contributing to T-ALL pathogenesis cannot be retrospectively analyzed in patients and thus remain ill defined. This information is clinically relevant, as initiating lesions that lead to cell transformation and leukemia-initiating cell (LIC) activity are promising therapeutic targets against the major hurdle of T-ALL relapse. Here, we describe the generation in vivo of a human T cell leukemia that recapitulates T-ALL in patients, which arises de novo in immunodeficient mice reconsti...
Source: Journal of Clinical Investigation - May 22, 2018 Category: Biomedical Science Authors: Marina García-Peydró, Patricia Fuentes, Marta Mosquera, María J. García-León, Juan Alcain, Antonio Rodríguez, Purificación García de Miguel, Pablo Menéndez, Kees Weijer, Hergen Spits, David T. Scadden, Carlos Cuesta-Mateos, Cecilia Muñoz-Calleja Source Type: research

PIM-2 protein kinase negatively regulates T cell responses in transplantation and tumor immunity
In this study, we investigated the role of the PIM kinases with respect to T cell responses in transplantation and tumor immunity. We found that the PIM-2 isoform negatively regulated T cell responses to alloantigen, in contrast to the PIM-1 and PIM-3 isoforms, which acted as positive regulators. T cells deficient in PIM-2 demonstrated increased T cell differentiation toward Th1 subset, proliferation, and migration to target organs after allogeneic bone marrow transplantation, resulting in dramatically accelerated graft-versus-host disease (GVHD) severity. Restoration of PIM-2 expression markedly attenuated the pathogenici...
Source: Journal of Clinical Investigation - May 22, 2018 Category: Biomedical Science Authors: Anusara Daenthanasanmak, Yongxia Wu, Supinya Iamsawat, Hung D. Nguyen, David Bastian, MengMeng Zhang, M. Hanief Sofi, Shilpak Chatterjee, Elizabeth G. Hill, Shikhar Mehrotra, Andrew S. Kraft, Xue-Zhong Yu Source Type: research

Spleen-derived classical monocytes mediate lung ischemia-reperfusion injury through IL-1β
Ischemia-reperfusion injury, a form of sterile inflammation, is the leading risk factor for both short-term mortality following pulmonary transplantation and chronic lung allograft dysfunction. While it is well recognized that neutrophils are critical mediators of acute lung injury, processes that guide their entry into pulmonary tissue are not well understood. Here, we found that CCR2+ classical monocytes are necessary and sufficient for mediating extravasation of neutrophils into pulmonary tissue during ischemia-reperfusion injury following hilar clamping or lung transplantation. The classical monocytes were mobilized fr...
Source: Journal of Clinical Investigation - May 22, 2018 Category: Biomedical Science Authors: Hsi-Min Hsiao, Ramiro Fernandez, Satona Tanaka, Wenjun Li, Jessica H. Spahn, Stephen Chiu, Mahzad Akbarpour, Daniel Ruiz-Perez, Qiang Wu, Cem Turam, Davide Scozzi, Tsuyoshi Takahashi, Hannah P. Luehmann, Varun Puri, G.R. Scott Budinger, Alexander S. Krupn Source Type: research

CNS myeloid cells critically regulate heat hyperalgesia
Activation of non-neuronal microglia is thought to play a causal role in spinal processing of neuropathic pain. To specifically investigate microglia-mediated effects in a model of neuropathic pain and overcome the methodological limitations of previous approaches exploring microglia function upon nerve injury, we selectively ablated resident microglia by intracerebroventricular ganciclovir infusion into male CD11b-HSVTK–transgenic mice, which was followed by a rapid, complete, and persistent (23 weeks) repopulation of the CNS by peripheral myeloid cells. In repopulated mice that underwent sciatic nerve injury, we ob...
Source: Journal of Clinical Investigation - May 22, 2018 Category: Biomedical Science Authors: Stefanie Kälin, Kelly R. Miller, Roland E. Kälin, Marina Jendrach, Christian Witzel, Frank L. Heppner Source Type: research

Contributions of inflammation and tumor microenvironment to neurofibroma tumorigenesis
Neurofibromatosis type 1 associates with multiple neoplasms, and the Schwann cell tumor neurofibroma is the most prevalent. A hallmark feature of neurofibroma is mast cell infiltration, which is recruited by chemoattractant stem cell factor (SCF) and has been suggested to sustain neurofibroma tumorigenesis. In the present study, we use new, genetically engineered Scf mice to decipher the contributions of tumor-derived SCF and mast cells to neurofibroma development. We demonstrate that mast cell infiltration is dependent on SCF from tumor Schwann cells. However, removal of mast cells by depleting the main SCF source only sl...
Source: Journal of Clinical Investigation - May 22, 2018 Category: Biomedical Science Authors: Chung-Ping Liao, Reid C. Booker, Jean-Philippe Brosseau, Zhiguo Chen, Juan Mo, Edem Tchegnon, Yong Wang, D. Wade Clapp, Lu Q. Le Source Type: research

Active suppression rather than ignorance: tolerance to abacavir-induced HLA-B*57:01 peptide repertoire alteration
This report potentially explains why 45% of HLA-B*57:01 carriers tolerate abacavir and provides a framework for future studies of HLA-restricted, T cell–mediated drug tolerance and hypersensitivity. (Source: Journal of Clinical Investigation)
Source: Journal of Clinical Investigation - May 22, 2018 Category: Biomedical Science Authors: Elizabeth J. Phillips, Simon A. Mallal Source Type: research

Leukotriene receptors as potential therapeutic targets
Leukotrienes, a class of arachidonic acid–derived bioactive molecules, are known as mediators of allergic and inflammatory reactions and considered to be important drug targets. Although an inhibitor of leukotriene biosynthesis and antagonists of the cysteinyl leukotriene receptor are clinically used for bronchial asthma and allergic rhinitis, these medications were developed before the molecular identification of leukotriene receptors. Numerous studies using cloned leukotriene receptors and genetically engineered mice have unveiled new pathophysiological roles for leukotrienes. This Review covers the recent findings...
Source: Journal of Clinical Investigation - May 15, 2018 Category: Biomedical Science Authors: Takehiko Yokomizo, Motonao Nakamura, Takao Shimizu Source Type: research

Resolvins in inflammation: emergence of the pro-resolving superfamily of mediators
Countless times each day, the acute inflammatory response protects us from invading microbes, injuries, and insults from within, as in surgery-induced tissue injury. These challenges go unnoticed because they are self-limited and naturally resolve without progressing to chronic inflammation. Peripheral blood markers of inflammation are present in many common diseases, including inflammatory bowel disease, cardiovascular disease, neurodegenerative disease, and cancer. While acute inflammation is protective, excessive swarming of neutrophils amplifies collateral tissue damage and inflammation. Hence, understanding the mechan...
Source: Journal of Clinical Investigation - May 15, 2018 Category: Biomedical Science Authors: Charles N. Serhan, Bruce D. Levy Source Type: research

The expanding constellation of immune checkpoints: a DNAMic control by CD155
The clinical benefits that have been achieved for a group of cancer patients with metastatic disease on checkpoint inhibitor therapy have kindled intense interest in understanding tumor-induced escape from T lymphocyte control. Other lymphoid cells also participate in tumor control; in particular, NK cells can limit hematogenous cancer metastasis spread and are also subject to negative regulation by developing cancers. In this issue of the JCI, Li and colleagues define an unanticipated role for the stress-induced protein CD155 in cancer metastasis. The presence of CD155 on the surface of cancer cells was shown to promote t...
Source: Journal of Clinical Investigation - May 15, 2018 Category: Biomedical Science Authors: Vincenzo Bronte Source Type: research

Eya3 promotes breast tumor–associated immune suppression via threonine phosphatase–mediated PD-L1 upregulation
Eya proteins are critical developmental regulators that are highly expressed in embryogenesis but downregulated after development. Amplification and/or re-expression of Eyas occurs in many tumor types. In breast cancer, Eyas regulate tumor progression by acting as transcriptional cofactors and tyrosine phosphatases. Intriguingly, Eyas harbor a separate threonine (Thr) phosphatase activity, which was previously implicated in innate immunity. Here we describe what we believe to be a novel role for Eya3 in mediating triple-negative breast cancer–associated immune suppression. Eya3 loss decreases tumor growth in immune-c...
Source: Journal of Clinical Investigation - May 15, 2018 Category: Biomedical Science Authors: Rebecca L. Vartuli, Hengbo Zhou, Lingdi Zhang, Rani K. Powers, Jared Klarquist, Pratyaydipta Rudra, Melanie Y. Vincent, Debashis Ghosh, James C. Costello, Ross M. Kedl, Jill E. Slansky, Rui Zhao, Heide L. Ford Source Type: research

CD155 loss enhances tumor suppression via combined host and tumor-intrinsic mechanisms
Critical immune-suppressive pathways beyond programmed death 1 (PD-1) and programmed death ligand 1 (PD-L1) require greater attention. Nectins and nectin-like molecules might be promising targets for immunotherapy, since they play critical roles in cell proliferation and migration and exert immunomodulatory functions in pathophysiological conditions. Here, we show CD155 expression in both malignant cells and tumor-infiltrating myeloid cells in humans and mice. Cd155–/– mice displayed reduced tumor growth and metastasis via DNAM-1 upregulation and enhanced effector function of CD8+ T and NK cells, respectively. ...
Source: Journal of Clinical Investigation - May 15, 2018 Category: Biomedical Science Authors: Xian-Yang Li, Indrajit Das, Ailin Lepletier, Venkateswar Addala, Tobias Bald, Kimberley Stannard, Deborah Barkauskas, Jing Liu, Amelia Roman Aguilera, Kazuyoshi Takeda, Matthias Braun, Kyohei Nakamura, Sebastien Jacquelin, Steven W. Lane, Michele W.L. Ten Source Type: research

Disease-driving CD4+ T cell clonotypes persist for decades in celiac disease
Little is known about the repertoire dynamics and persistence of pathogenic T cells in HLA-associated disorders. In celiac disease, a disorder with a strong association with certain HLA-DQ allotypes, presumed pathogenic T cells can be visualized and isolated with HLA-DQ:gluten tetramers, thereby enabling further characterization. Single and bulk populations of HLA-DQ:gluten tetramer–sorted CD4+ T cells were analyzed by high-throughput DNA sequencing of rearranged TCR-α and -β genes. Blood and gut biopsy samples from 21 celiac disease patients, taken at various stages of disease and in intervals of weeks to...
Source: Journal of Clinical Investigation - May 15, 2018 Category: Biomedical Science Authors: Louise F. Risnes, Asbjørn Christophersen, Shiva Dahal-Koirala, Ralf S. Neumann, Geir K. Sandve, Vikas K. Sarna, Knut E.A. Lundin, Shuo-Wang Qiao, Ludvig M. Sollid Source Type: research

Reversing the curse on PPARγ
Thiazolidinediones (TZDs) are the only antidiabetic drugs that reverse insulin resistance. They have been a valuable asset in the treatment of type 2 diabetes, but their side effects have curtailed widespread use in the clinic. In this issue of the JCI, Kraakman and colleagues provide evidence that deacetylation of the nuclear receptor PPARγ improves the therapeutic index of TZDs. These findings should revitalize the quest to employ insulin sensitization as a first-line approach to managing type 2 diabetes. (Source: Journal of Clinical Investigation)
Source: Journal of Clinical Investigation - May 15, 2018 Category: Biomedical Science Authors: Mitchell A. Lazar Source Type: research

Blocking IFNAR1 inhibits multiple myeloma–driven Treg expansion and immunosuppression
In this study, we demonstrate that myeloma cells drive Treg expansion and activation by secreting type 1 interferon (IFN). Blocking IFN α and β receptor 1 (IFNAR1) on Tregs significantly decreases both myeloma-associated Treg immunosuppressive function and myeloma progression. Using syngeneic transplantable murine myeloma models and bone marrow (BM) aspirates of MM patients, we found that Tregs were expanded and activated in the BM microenvironment at early stages of myeloma development. Selective depletion of Tregs led to a complete remission and prolonged survival in mice injected with myeloma cells. Further a...
Source: Journal of Clinical Investigation - May 15, 2018 Category: Biomedical Science Authors: Yawara Kawano, Oksana Zavidij, Jihye Park, Michele Moschetta, Katsutoshi Kokubun, Tarek H. Mouhieddine, Salomon Manier, Yuji Mishima, Naoka Murakami, Mark Bustoros, Romanos Sklavenitis Pistofidis, Mairead Reidy, Yu J. Shen, Mahshid Rahmat, Pavlo Lukyanchy Source Type: research

Neuronal hypothalamic regulation of body metabolism and bone density is galanin dependent
In the brain, the ventral hypothalamus (VHT) regulates energy and bone metabolism. Whether this regulation uses the same or different neuronal circuits is unknown. Alteration of AP1 signaling in the VHT increases energy expenditure, glucose utilization, and bone density, yet the specific neurons responsible for each or all of these phenotypes are not identified. Using neuron-specific, genetically targeted AP1 alterations as a tool in adult mice, we found that agouti-related peptide–expressing (AgRP-expressing) or proopiomelanocortin-expressing (POMC-expressing) neurons, predominantly present in the arcuate nucleus (A...
Source: Journal of Clinical Investigation - May 15, 2018 Category: Biomedical Science Authors: Anna Idelevich, Kazusa Sato, Kenichi Nagano, Glenn Rowe, Francesca Gori, Roland Baron Source Type: research

Notch-effector CSL promotes squamous cell carcinoma by repressing histone demethylase KDM6B
Notch 1/2 genes play tumor-suppressing functions in squamous cell carcinoma (SCC), a very common malignancy in skin and internal organs. In contrast with Notch, we show that the transcription factor CSL (also known as RBP-Jκ), a key effector of canonical Notch signaling endowed with intrinsic transcription-repressive functions, plays a tumor-promoting function in SCC development. Expression of this gene decreased in upper epidermal layers and human keratinocytes (HKCs) undergoing differentiation, while it increased in premalignant and malignant SCC lesions from skin, head/neck, and lung. Increased CSL levels enhanced...
Source: Journal of Clinical Investigation - May 15, 2018 Category: Biomedical Science Authors: Dania Al Labban, Seung-Hee Jo, Paola Ostano, Chiara Saglietti, Massimo Bongiovanni, Renato Panizzon, G. Paolo Dotto Source Type: research

MicroRNA-210 overexpression promotes psoriasis-like inflammation by inducing Th1 and Th17 cell differentiation
Immune imbalance of T lymphocyte subsets is a hallmark of psoriasis, but the molecular mechanisms underlying this aspect of psoriasis pathology are poorly understood. Here, we report that microRNA-210 (miR-210), a miR that is highly expressed in both psoriasis patients and mouse models, induces helper T (Th) 17 and Th1 cell differentiation but inhibits Th2 differentiation through repressing STAT6 and LYN expression, contributing to several aspects of the immune imbalance in psoriasis. Both miR-210 ablation in mice and inhibition of miR-210 by intradermal injection of antagomir-210 blocked the immune imbalance and the devel...
Source: Journal of Clinical Investigation - May 15, 2018 Category: Biomedical Science Authors: Ruifang Wu, Jinrong Zeng, Jin Yuan, Xinjie Deng, Yi Huang, Lina Chen, Peng Zhang, Huan Feng, Zixin Liu, Zijun Wang, Xiaofei Gao, Haijing Wu, Honglin Wang, Yuwen Su, Ming Zhao, Qianjin Lu Source Type: research

PPARγ deacetylation dissociates thiazolidinedione’s metabolic benefits from its adverse effects
Thiazolidinediones (TZDs) are PPARγ agonists with potent insulin-sensitizing effects. However, their use has been curtailed by substantial adverse effects on weight, bone, heart, and hemodynamic balance. TZDs induce the deacetylation of PPARγ on K268 and K293 to cause the browning of white adipocytes. Here, we show that targeted PPARγ mutations resulting in constitutive deacetylation (K268R/K293R, 2KR) increased energy expenditure and protected from visceral adiposity and diet-induced obesity by augmenting brown remodeling of white adipose tissues. Strikingly, when 2KR mice were treated with rosiglitazone...
Source: Journal of Clinical Investigation - May 15, 2018 Category: Biomedical Science Authors: Michael J. Kraakman, Qiongming Liu, Jorge Postigo-Fernandez, Ruiping Ji, Ning Kon, Delfina Larrea, Maria Namwanje, Lihong Fan, Michelle Chan, Estela Area-Gomez, Wenxian Fu, Remi J. Creusot, Li Qiang Source Type: research

Imaging activated T cells predicts response to cancer vaccines
In this study, we describe a PET tracer (64Cu-DOTA-AbOX40) that enabled noninvasive and longitudinal imaging of OX40, a cell-surface marker of T cell activation. We report the spatiotemporal dynamics of T cell activation following in situ vaccination with CpG oligodeoxynucleotide in a dual tumor–bearing mouse model. We demonstrate that OX40 imaging was able to predict tumor responses on day 9 after treatment on the basis of tumor tracer uptake on day 2, with greater accuracy than both anatomical and blood-based measurements. These studies provide key insights into global T cell activation following local CpG treatmen...
Source: Journal of Clinical Investigation - May 15, 2018 Category: Biomedical Science Authors: Israt S. Alam, Aaron T. Mayer, Idit Sagiv-Barfi, Kezheng Wang, Ophir Vermesh, Debra K. Czerwinski, Emily M. Johnson, Michelle L. James, Ronald Levy, Sanjiv S. Gambhir Source Type: research

sNASP inhibits TLR signaling to regulate immune response in sepsis
Many Toll-like receptors (TLRs) signal through TNF receptor–associated factor 6 (TRAF6) to activate innate immune responses. Here, we show that somatic nuclear autoantigenic sperm protein (sNASP) binds to TRAF6 to prevent TRAF6 autoubiquitination in unstimulated macrophages. Following LPS stimulation, a complex consisting of sNASP, TRAF6, IRAK4, and casein kinase 2 (CK2) is formed. CK2 phosphorylates sNASP at serine 158, allowing sNASP to dissociate from TRAF6. Free TRAF6 is then autoubiquitinated, followed by activation of downstream signaling pathways. In sNasp S158A knockin (S158A-KI) mice, LPS-treated macrophages...
Source: Journal of Clinical Investigation - May 8, 2018 Category: Biomedical Science Authors: Feng-Ming Yang, Yong Zuo, Wei Zhou, Chuan Xia, Bumsuk Hahm, Mark Sullivan, Jinke Cheng, Hui-Ming Chang, Edward T.H. Yeh Source Type: research

HMGB1 links chronic liver injury to progenitor responses and hepatocarcinogenesis
Cell death is a key driver of disease progression and carcinogenesis in chronic liver disease (CLD), highlighted by the well-established clinical correlation between hepatocellular death and risk for the development of cirrhosis and hepatocellular carcinoma (HCC). Moreover, hepatocellular death is sufficient to trigger fibrosis and HCC in mice. However, the pathways through which cell death drives CLD progression remain elusive. Here, we tested the hypothesis that high-mobility group box 1 (HMGB1), a damage-associated molecular pattern (DAMP) with key roles in acute liver injury, may link cell death to injury responses and...
Source: Journal of Clinical Investigation - May 8, 2018 Category: Biomedical Science Authors: Celine Hernandez, Peter Huebener, Jean-Philippe Pradere, Daniel J. Antoine, Richard A. Friedman, Robert F. Schwabe Source Type: research

Role of prostanoids in gastrointestinal cancer
Chronic inflammation is a risk factor for gastrointestinal cancer and other diseases. Most studies have focused on cytokines and chemokines as mediators connecting chronic inflammation to cancer, whereas the involvement of lipid mediators, including prostanoids, has not been extensively investigated. Prostanoids are among the earliest signaling molecules released in response to inflammation. Multiple lines of evidence suggest that prostanoids are involved in gastrointestinal cancer. In this Review, we discuss how prostanoids impact gastrointestinal cancer development. In particular, we highlight recent advances in our unde...
Source: Journal of Clinical Investigation - May 8, 2018 Category: Biomedical Science Authors: Dingzhi Wang, Raymond N. DuBois Source Type: research

UHRF1 epigenetically orchestrates smooth muscle cell plasticity in arterial disease
Adult vascular smooth muscle cells (VSMCs) dedifferentiate in response to extracellular cues such as vascular damage and inflammation. Dedifferentiated VSMCs are proliferative, migratory, less contractile, and can contribute to vascular repair as well as to cardiovascular pathologies such as intimal hyperplasia/restenosis in coronary artery and arterial aneurysm. We here demonstrate the role of ubiquitin-like containing PHD and RING finger domains 1 (UHRF1) as an epigenetic master regulator of VSMC plasticity. UHRF1 expression correlated with the development of vascular pathologies associated with modulation of noncoding R...
Source: Journal of Clinical Investigation - May 8, 2018 Category: Biomedical Science Authors: Leonardo Elia, Paolo Kunderfranco, Pierluigi Carullo, Marco Vacchiano, Floriana Maria Farina, Ignacio Fernando Hall, Stefano Mantero, Cristina Panico, Roberto Papait, Gianluigi Condorelli, Manuela Quintavalle Source Type: research

TNF-driven adaptive response mediates resistance to EGFR inhibition in lung cancer
Although aberrant EGFR signaling is widespread in cancer, EGFR inhibition is effective only in a subset of non–small cell lung cancer (NSCLC) with EGFR activating mutations. A majority of NSCLCs express EGFR wild type (EGFRwt) and do not respond to EGFR inhibition. TNF is a major mediator of inflammation-induced cancer. We find that a rapid increase in TNF level is a universal adaptive response to EGFR inhibition in NSCLC, regardless of EGFR status. EGFR signaling actively suppresses TNF mRNA levels by inducing expression of miR-21, resulting in decreased TNF mRNA stability. Conversely, EGFR inhibition results in los...
Source: Journal of Clinical Investigation - May 8, 2018 Category: Biomedical Science Authors: Ke Gong, Gao Guo, David E. Gerber, Boning Gao, Michael Peyton, Chun Huang, John D. Minna, Kimmo J. Hatanpaa, Kemp Kernstine, Ling Cai, Yang Xie, Hong Zhu, Farjana J. Fattah, Shanrong Zhang, Masaya Takahashi, Bipasha Mukherjee, Sandeep Burma, Jonathan Dowe Source Type: research

HMGB1 promotes ductular reaction and tumorigenesis in autophagy-deficient livers
In conclusion, HMGB1 release is a critical mechanism in hepatic pathogenesis under autophagy-deficient conditions and leads to HPC expansion as well as tumor progression. (Source: Journal of Clinical Investigation)
Source: Journal of Clinical Investigation - May 8, 2018 Category: Biomedical Science Authors: Bilon Khambu, Nazmul Huda, Xiaoyun Chen, Daniel J. Antoine, Yong Li, Guoli Dai, Ulrike A. Köhler, Wei-Xing Zong, Satoshi Waguri, Sabine Werner, Tim D. Oury, Zheng Dong, Xiao-Ming Yin Source Type: research

FOXM1 is a critical driver of lung fibroblast activation and fibrogenesis
While the transcription factor forkhead box M1 (FOXM1) is well known as a proto-oncogene, its potential role in lung fibroblast activation has never been explored. Here, we show that FOXM1 is more highly expressed in fibrotic than in normal lung fibroblasts in humans and mice. FOXM1 was required not only for cell proliferation in response to mitogens, but also for myofibroblast differentiation and apoptosis resistance elicited by TGF-β. The lipid mediator PGE2, acting via cAMP signaling, was identified as an endogenous negative regulator of FOXM1. Finally, genetic deletion of FOXM1 in fibroblasts or administration of ...
Source: Journal of Clinical Investigation - May 8, 2018 Category: Biomedical Science Authors: Loka R. Penke, Jennifer M. Speth, Vijaya L. Dommeti, Eric S. White, Ingrid L. Bergin, Marc Peters-Golden Source Type: research

Heat shock protein 60 enhances CD4+CD25+ regulatory T cell function via innate TLR2 signaling
(Source: Journal of Clinical Investigation)
Source: Journal of Clinical Investigation - May 8, 2018 Category: Biomedical Science Authors: Alexandra Zanin-Zhorov, Liora Cahalon, Guy Tal, Raanan Margalit, Ofer Lider, Irun R. Cohen Source Type: research

Human herpesvirus–encoded kinase induces B cell lymphomas in vivo
Kaposi’s sarcoma–associated herpesvirus (KSHV) is a gammaherpesvirus that is the etiological agent of the endothelial cell cancer Kaposi’s sarcoma (KS) and 2 B cell lymphoproliferative disorders, primary effusion lymphoma (PEL) and multicentric Castleman’s disease (MCD). KSHV ORF36, also known as viral protein kinase (vPK), is a viral serine/threonine kinase. We previously reported that KSHV vPK enhances cell proliferation and mimics cellular S6 kinase to phosphorylate ribosomal protein S6, a protein involved in protein synthesis. We created a mouse model to analyze the function of vPK in vivo. We b...
Source: Journal of Clinical Investigation - May 8, 2018 Category: Biomedical Science Authors: Penny M. Anders, Nathan D. Montgomery, Stephanie A. Montgomery, Aadra P. Bhatt, Dirk P. Dittmer, Blossom Damania Source Type: research

A viral protein kinase drug target for tumors?
The human gammaherpesviruses, Epstein-Barr virus (EBV) and Kaposi’s sarcoma–associated herpesvirus (KSHV), are both associated with tumors. Standard antiviral therapies are ineffective at treating these tumors. A serine/threonine kinase important for viral replication is conserved across the herpesviruses. Expression of the KSHV protein kinase in transgenic mice under the control of a ubiquitin promoter was associated with B cell lymphoproliferative disease and lymphoma. If the viral protein kinase is important in the pathogenesis of KSHV lymphoproliferative disease or lymphoma, the kinase may present a very go...
Source: Journal of Clinical Investigation - May 8, 2018 Category: Biomedical Science Authors: Richard F. Ambinder Source Type: research

Interpreting heterogeneity in intestinal tuft cell structure and function
Intestinal tuft cells are a morphologically unique cell type, best characterized by striking microvilli that form an apical tuft. These cells represent approximately 0.5% of gut epithelial cells depending on location. While they are known to express chemosensory receptors, their function has remained unclear. Recently, numerous groups have revealed startling insights into intestinal tuft cell biology. Here, we review the latest developments in understanding this peculiar cell type’s structure and function. Recent advances in volumetric microscopy have begun to elucidate tuft cell ultrastructure with respect to its ce...
Source: Journal of Clinical Investigation - May 2, 2018 Category: Biomedical Science Authors: Amrita Banerjee, Eliot T. McKinley, Jakob von Moltke, Robert J. Coffey, Ken S. Lau Source Type: research

Systemic isradipine treatment diminishes calcium-dependent mitochondrial oxidant stress
The ability of the Cav1 channel inhibitor isradipine to slow the loss of substantia nigra pars compacta (SNc) dopaminergic (DA) neurons and the progression of Parkinson’s disease (PD) is being tested in a phase 3 human clinical trial. But it is unclear whether and how chronic isradipine treatment will benefit SNc DA neurons in vivo. To pursue this question, isradipine was given systemically to mice at doses that achieved low nanomolar concentrations in plasma, near those achieved in patients. This treatment diminished cytosolic Ca2+ oscillations in SNc DA neurons without altering autonomous spiking or expression of C...
Source: Journal of Clinical Investigation - May 1, 2018 Category: Biomedical Science Authors: Jaime N. Guzman, Ema Ilijic, Ben Yang, Javier Sanchez-Padilla, David Wokosin, Dan Galtieri, Jyothisri Kondapalli, Paul T. Schumacker, D. James Surmeier Source Type: research

DNA methyltransferase expression in triple-negative breast cancer predicts sensitivity to decitabine
Triple-negative breast cancer (TNBC) is a heterogeneous disease with poor prognosis that lacks targeted therapies, especially in patients with chemotherapy-resistant disease. Since DNA methylation-induced silencing of tumor suppressors is common in cancer, reversal of promoter DNA hypermethylation by 5-aza-2′-deoxycytidine (decitabine), an FDA-approved DNA methyltransferase (DNMT) inhibitor, has proven effective in treating hematological neoplasms. However, its antitumor effect varies in solid tumors, stressing the importance of identifying biomarkers predictive of therapeutic response. Here, we focused on the identi...
Source: Journal of Clinical Investigation - May 1, 2018 Category: Biomedical Science Authors: Jia Yu, Bo Qin, Ann M. Moyer, Somaira Nowsheen, Tongzheng Liu, Sisi Qin, Yongxian Zhuang, Duan Liu, Shijia W. Lu, Krishna R. Kalari, Daniel W. Visscher, John A. Copland, Sarah A. McLaughlin, Alvaro Moreno-Aspitia, Donald W. Northfelt, Richard J. Gray, Zhe Source Type: research

TRAP-seq identifies cystine/glutamate antiporter as a driver of recovery from liver injury
Understanding the molecular basis of the regenerative response following hepatic injury holds promise for improved treatment of liver diseases. Here, we report an innovative method to profile gene expression specifically in the hepatocytes that regenerate the liver following toxic injury. We used the Fah–/– mouse, a model of hereditary tyrosinemia, which conditionally undergoes severe liver injury unless fumarylacetoacetate hydrolase (FAH) expression is reconstituted ectopically. We used translating ribosome affinity purification followed by high-throughput RNA sequencing (TRAP-seq) to isolate mRNAs specific to...
Source: Journal of Clinical Investigation - May 1, 2018 Category: Biomedical Science Authors: Amber W. Wang, Kirk J. Wangensteen, Yue J. Wang, Adam M. Zahm, Nicholas G. Moss, Noam Erez, Klaus H. Kaestner Source Type: research

Hypercholesterolemia induces T cell expansion in humanized immune mice
Emerging data suggest that hypercholesterolemia has stimulatory effects on adaptive immunity and that these effects can promote atherosclerosis and perhaps other inflammatory diseases. However, research in this area has relied primarily on inbred strains of mice whose adaptive immune system can differ substantially from that of humans. Moreover, the genetically induced hypercholesterolemia in these models typically results in plasma cholesterol levels that are much higher than those in most humans. To overcome these obstacles, we studied human immune system–reconstituted mice (hu-mice) rendered hypercholesterolemic b...
Source: Journal of Clinical Investigation - May 1, 2018 Category: Biomedical Science Authors: Jonathan D. Proto, Amanda C. Doran, Manikandan Subramanian, Hui Wang, Mingyou Zhang, Erdi Sozen, Christina C. Rymond, George Kuriakose, Vivette D’Agati, Robert Winchester, Megan Sykes, Yong-Guang Yang, Ira Tabas Source Type: research

Prometheus revisited
The liver’s extraordinary ability to regenerate has been known since the myth of Prometheus, but the mechanisms involved are still being discovered. Various small animal models have been used in this quest. Two of the most popular include partial hepatectomy (PHx), in which two-thirds of the liver mass is surgically removed to evoke a massive, immediate stimulus for regeneration, and prolonged exposure to toxins that kill liver cells more gradually, provoking chronic regenerative activity. In either case, multiple types of cells must interact effectively to repopulate the organ with functional mature hepatocytes and ...
Source: Journal of Clinical Investigation - May 1, 2018 Category: Biomedical Science Authors: Kai-Yuan Chen, Xiling Shen, Anna Mae Diehl Source Type: research

Circadian clock component REV-ERBα controls homeostatic regulation of pulmonary inflammation
Recent studies reveal that airway epithelial cells are critical pulmonary circadian pacemaker cells, mediating rhythmic inflammatory responses. Using mouse models, we now identify the rhythmic circadian repressor REV-ERBα as essential to the mechanism coupling the pulmonary clock to innate immunity, involving both myeloid and bronchial epithelial cells in temporal gating and determining amplitude of response to inhaled endotoxin. Dual mutation of REV-ERBα and its paralog REV-ERBβ in bronchial epithelia further augmented inflammatory responses and chemokine activation, but also initiated a basal inflammator...
Source: Journal of Clinical Investigation - May 1, 2018 Category: Biomedical Science Authors: Marie Pariollaud, Julie E. Gibbs, Thomas W. Hopwood, Sheila Brown, Nicola Begley, Ryan Vonslow, Toryn Poolman, Baoqiang Guo, Ben Saer, D. Heulyn Jones, James P. Tellam, Stefano Bresciani, Nicholas C.O. Tomkinson, Justyna Wojno-Picon, Anthony W.J. Cooper, Source Type: research

Tumor-secreted Pros1 inhibits macrophage M1 polarization to reduce antitumor immune response
Tyro3, Axl, Mer (TAM) receptor tyrosine kinases reduce inflammatory, innate immune responses. We demonstrate that tumor-secreted protein S (Pros1), a Mer/Tyro3 ligand, decreased macrophage M1 cytokine expression in vitro and in vivo. In contrast, tumor cells with CRISPR-based deletion of Pros1 failed to inhibit M1 polarization. Tumor cell–associated Pros1 action was abrogated in macrophages from Mer- and Tyro3- but not Axl-KO mice. In addition, several other murine and human tumor cell lines suppressed macrophage M1 cytokine expression induced by IFN-γ and LPS. Investigation of the suppressive pathway demonstra...
Source: Journal of Clinical Investigation - May 1, 2018 Category: Biomedical Science Authors: Eric Ubil, Laura Caskey, Alisha Holtzhausen, Debra Hunter, Charlotte Story, H. Shelton Earp Source Type: research

Transient HIF2A inhibition promotes satellite cell proliferation and muscle regeneration
The remarkable regeneration capability of skeletal muscle depends on the coordinated proliferation and differentiation of satellite cells (SCs). The self-renewal of SCs is critical for long-term maintenance of muscle regeneration potential. Hypoxia profoundly affects the proliferation, differentiation, and self-renewal of cultured myoblasts. However, the physiological relevance of hypoxia and hypoxia signaling in SCs in vivo remains largely unknown. Here, we demonstrate that SCs are in an intrinsic hypoxic state in vivo and express hypoxia-inducible factor 2A (HIF2A). HIF2A promotes the stemness and long-term homeostatic m...
Source: Journal of Clinical Investigation - May 1, 2018 Category: Biomedical Science Authors: Liwei Xie, Amelia Yin, Anna S. Nichenko, Aaron M. Beedle, Jarrod A. Call, Hang Yin Source Type: research

Dose intensification of TRAIL-inducing ONC201 inhibits metastasis and promotes intratumoral NK cell recruitment
ONC201 is a first-in-class, orally active antitumor agent that upregulates cytotoxic TRAIL pathway signaling in cancer cells. ONC201 has demonstrated safety and preliminary efficacy in a first-in-human trial in which patients were dosed every 3 weeks. We hypothesized that dose intensification of ONC201 may impact antitumor efficacy. We discovered that ONC201 exerts dose- and schedule-dependent effects on tumor progression and cell death signaling in vivo. With dose intensification, we note a potent anti-metastasis effect and inhibition of cancer cell migration and invasion. Our preclinical results prompted a change in ONC2...
Source: Journal of Clinical Investigation - May 1, 2018 Category: Biomedical Science Authors: Jessica Wagner, C. Leah Kline, Lanlan Zhou, Kerry S. Campbell, Alexander W. MacFarlane, Anthony J. Olszanski, Kathy Q. Cai, Harvey H. Hensley, Eric A. Ross, Marie D. Ralff, Andrew Zloza, Charles B. Chesson, Jenna H. Newman, Howard Kaufman, Joseph Bertino, Source Type: research

DEPDC5 takes a second hit in familial focal epilepsy
This study provides important insights into familial focal epilepsy and provides a preclinical model for evaluating potential therapies. (Source: Journal of Clinical Investigation)
Source: Journal of Clinical Investigation - May 1, 2018 Category: Biomedical Science Authors: Matthew P. Anderson Source Type: research

Second-hit mosaic mutation in mTORC1 repressor DEPDC5 causes focal cortical dysplasia–associated epilepsy
This study reveals promising therapeutic avenues for treating drug-resistant focal epilepsies with mTORC1-targeting molecules. (Source: Journal of Clinical Investigation)
Source: Journal of Clinical Investigation - May 1, 2018 Category: Biomedical Science Authors: Théo Ribierre, Charlotte Deleuze, Alexandre Bacq, Sara Baldassari, Elise Marsan, Mathilde Chipaux, Giuseppe Muraca, Delphine Roussel, Vincent Navarro, Eric Leguern, Richard Miles, Stéphanie Baulac Source Type: research

Granulocyte-CSF links destructive inflammation and comorbidities in obstructive lung disease
Chronic obstructive pulmonary disease (COPD) is an incurable inflammatory lung disease that afflicts millions of people worldwide, and it is the fourth leading cause of death. Systemic comorbidities affecting the heart, skeletal muscle, bone, and metabolism are major contributors to morbidity and mortality. Given the surprising finding in large prospective clinical biomarker studies that peripheral white blood cell count is more closely associated with disease than inflammatory biomarkers, we probed the role of blood growth factors. Using the SHIP-1–deficient COPD mouse model, which manifests a syndrome of destructiv...
Source: Journal of Clinical Investigation - May 1, 2018 Category: Biomedical Science Authors: Evelyn Tsantikos, Maverick Lau, Cassandra M.N. Castelino, Mhairi J. Maxwell, Samantha L. Passey, Michelle J. Hansen, Narelle E. McGregor, Natalie A. Sims, Daniel P. Steinfort, Louis B. Irving, Gary P. Anderson, Margaret L. Hibbs Source Type: research

Reducing CXCR4-mediated nociceptor hyperexcitability reverses painful diabetic neuropathy
This study reveals that excitatory CXCR4/CXCL12 signaling in Nav1.8-positive DRG neurons plays a critical role in the pathogenesis of mechanical allodynia and small-fiber degeneration in a mouse model of PDN. Hence, we propose that targeting CXCR4-mediated DRG nociceptor hyperexcitability is a promising therapeutic approach for disease-modifying treatments for this currently intractable and widespread affliction. (Source: Journal of Clinical Investigation)
Source: Journal of Clinical Investigation - April 24, 2018 Category: Biomedical Science Authors: Nirupa D. Jayaraj, Bula J. Bhattacharyya, Abdelhak A. Belmadani, Dongjun Ren, Craig A. Rathwell, Sandra Hackelberg, Brittany E. Hopkins, Herschel R. Gupta, Richard J. Miller, Daniela M. Menichella Source Type: research

Coexisting genomic aberrations associated with lymph node metastasis in breast cancer
Single cancer cell–sequencing studies currently use randomly selected cells, limiting correlations among genomic aberrations, morphology, and spatial localization. We laser-captured microdissected single cells from morphologically distinct areas of primary breast cancer and corresponding lymph node metastasis and performed whole-exome or deep-target sequencing of more than 100 such cells. Two major subclones coexisted in different areas of the primary tumor, and the lymph node metastasis originated from a minor subclone in the invasive front of the primary tumor, with additional copy number changes, including chr8q g...
Source: Journal of Clinical Investigation - April 24, 2018 Category: Biomedical Science Authors: Li Bao, Zhaoyang Qian, Maria B. Lyng, Ling Wang, Yuan Yu, Ting Wang, Xiuqing Zhang, Huanming Yang, Nils Brünner, Jun Wang, Henrik J. Ditzel Source Type: research

Ketohexokinase C blockade ameliorates fructose-induced metabolic dysfunction in fructose-sensitive mice
In this report, through use of genetically modified mice and pharmacological inhibitors, we demonstrate that the absence or inhibition of ketohexokinase (Khk), an enzyme upstream of aldolase B, is sufficient to prevent hypoglycemia and liver and intestinal injury associated with HFI. Herein we provide evidence for the first time to our knowledge of a potential therapeutic approach for HFI. Mechanistically, our studies suggest that it is the inhibition of the Khk C isoform, not the A isoform, that protects animals from HFI. (Source: Journal of Clinical Investigation)
Source: Journal of Clinical Investigation - April 24, 2018 Category: Biomedical Science Authors: Miguel A. Lanaspa, Ana Andres-Hernando, David J. Orlicky, Christina Cicerchi, Cholsoon Jang, Nanxing Li, Tamara Milagres, Masanari Kuwabara, Michael F. Wempe, Joshua D. Rabinowitz, Richard J. Johnson, Dean R. Tolan Source Type: research

Phospholipid signaling in innate immune cells
Phospholipids comprise a large body of lipids that define cells and organelles by forming membrane structures. Importantly, their complex metabolism represents a highly controlled cellular signaling network that is essential for mounting an effective innate immune response. Phospholipids in innate cells are subject to dynamic regulation by enzymes, whose activities are highly responsive to activation status. Along with their metabolic products, they regulate multiple aspects of innate immune cell biology, including shape change, aggregation, blood clotting, and degranulation. Phospholipid hydrolysis provides substrates for...
Source: Journal of Clinical Investigation - April 24, 2018 Category: Biomedical Science Authors: Valerie B. O’Donnell, Jamie Rossjohn, Michael J.O. Wakelam Source Type: research

Mutant ataxin1 disrupts cerebellar development in spinocerebellar ataxia type 1
Spinocerebellar ataxia type 1 (SCA1) is an adult-onset neurodegenerative disease caused by a polyglutamine expansion in the protein ATXN1, which is involved in transcriptional regulation. Although symptoms appear relatively late in life, primarily from cerebellar dysfunction, pathogenesis begins early, with transcriptional changes detectable as early as a week after birth in SCA1-knockin mice. Given the importance of this postnatal period for cerebellar development, we asked whether this region might be developmentally altered by mutant ATXN1. We found that expanded ATXN1 stimulates the proliferation of postnatal cerebella...
Source: Journal of Clinical Investigation - April 24, 2018 Category: Biomedical Science Authors: Chandrakanth Reddy Edamakanti, Jeehaeh Do, Alessandro Didonna, Marco Martina, Puneet Opal Source Type: research