Crystal structure of the Thr316Ala mutant of a yeast JAMM deubiquitinase: implication of active-site loop dynamics in catalysis

AMSH, an endosome-associated deubiquitinase (DUB) with a high specificity for Lys63-linked polyubiquitin chains, plays an important role in endosomal – lysosomal sorting and down-regulation of cell-surface receptors. AMSH belongs to the JAMM family of DUBs that contain two insertion segments, Ins-1 and Ins-2, in the catalytic domain relative to the JAMM core found in the archaebacterial AfJAMM. Structural analyses of the AMSH homologs human AMSH-LP and fission yeast Sst2 reveal a flap-like structure formed by Ins-2 near the active site that appears to open and close during its catalytic cycle. A conserved phenylalanine residue of the flap interacts with a conserved aspartate residue of the Ins-1 β -turn to form a closed `lid' over the active site in the substrate-bound state. Analyses of these two residues (Phe403 and Asp315) in Sst2 showed that their interaction plays an important role in controlling the flexibility of Ins-2. The Lys63-linked diubiquitin substrate-bound form of Sst2 showed that the conserved phenylalanine also interacts with Thr316 of Ins-1, which is substituted by tyrosine in other AMSH orthologs. Although Thr316 makes no direct interaction with the substrate, its mutation to alanine resulted in a significant loss of activity. In order to understand the contribution of Thr316 to catalysis, the crystal structure of this mutant was determined. In spite of the effect of the mutation on catalytic activity, the structure of the Sst2 Thr316Ala mutant did not r...
Source: Acta Crystallographica Section F - Category: Biochemistry Authors: Tags: deubiquitinating enzymes JAMM domains ESCRT complexes Lys63-linked polyubiquitin-chain deubiquitinase research communications Source Type: research
More News: Biochemistry