An Integrated Multi-Channel Biopotential Recording Analog Front-End IC With Area-Efficient Driven-Right-Leg Circuit

A multi-channel biopotential recording analog front-end (AFE) with a fully integrated area-efficient driven-right-leg (DRL) circuit is presented in this paper. The proposed AFE includes 10 channels of low-noise capacitive coupled instrumentation amplifier (CCIA), one shared 10-bit SAR ADC and a fully integrated DRL to enhance the system-level common-mode rejection ratio (CMRR). The proposed DRL circuit senses the common-mode at the CCIA output so that the AFE gain is reused as the DRL loop gain. Therefore, area efficient unit-gain buffer with small averaging capacitors can be used in DRL circuit to reduce the circuit area significantly. The proposed AFE has been implemented in a standard 0.18-μm CMOS process. The DRL circuit achieved more than 85% chip area reduction compared to the state-of-art on-chip DRL circuits and maximum 60 dB enhancement to system-level CMRR. Measurement results show high/low AFE gain of 60 dB/54 dB respectively with 1 μA/channel current consumption under 1.0 V power supply. The measured AFE input-referred noise in 1 Hz − 10k Hz range is 4.2 μVrms and the maximum system-level CMRR is 110 dB.
Source: IEEE Transactions on Biomedical Circuits and Systems - Category: Biomedical Engineering Source Type: research