Combined Bead-Based Multiplex Detection of RNA and Protein Biomarkers: Implications for Understanding the Time Course of Skeletal Muscle Injury and Repair

Publication date: Available online 22 November 2018Source: MethodsAuthor(s): Melody A. Gary, Elizabeth A. Tanner, Asheal A. Davis, Brian K. McFarlinAbstractBiological response to skeletal muscle injury time course is generally classified as initial (elevated within first 4-h), delayed (elevated at 24-h), and/or prolonged (elevated at 4-h and sustained to 24-h). Accurate description of this process requires the ability to measure a robust set of RNA and protein biomarkers, yet such an approach is not common and not always feasible. This method proposes a novel experimental approach that focuses on the use of bead-based multiplex detection to measure mRNA, lncRNA, cytokines, soluble cytokine receptors, and myokines at 4-h and 24-h post muscle injury. We used an extreme aerobic exercise session (half-marathon race) to create a consistent muscle injury stimulus via oxidative stress and eccentric contractions. Venous blood samples were analyzed to determine the change in 90 targets. Specifically, we identified 14 mRNA, 2 lncRNA, 4 cytokines, and 5 myokines that had only an initial response (change at 4-h). We identified 2 mRNA, 2 cytokines, 13 soluble cytokine receptors, and 1 myokine that had only a delayed response (change at 24-h). Finally, we identified 18 mRNA, 4 lncRNA, 6 myokines and 15 cytokines that had a prolonged response (change at 4-h and sustained at 24-h). We found 4 targets to be undetectable or having no response relative to muscle injury recovery. These findings ...
Source: Methods - Category: Molecular Biology Source Type: research