A physics-embedded deep-learning framework for efficient multi-fidelity modeling applied to guided wave based structural health monitoring

Ultrasonics. 2024 Apr 27;141:107325. doi: 10.1016/j.ultras.2024.107325. Online ahead of print.ABSTRACTHealth monitoring of structures using ultrasonic guided waves is an evolving technology with potential applications in monitoring pipelines, civil bridges, and aircraft components. However, the sensitivity of guided waves to external parameters affects the reliability of monitoring systems based on them. These influencing factors and experimental related factors cannot be perfectly modeled, which give rise to the discrepancy between numerical simulations and experimental measurements. Therefore, it is important to address this inevitable discrepancy and generate close-to-experiment simulations. In this work, we present a deep learning-based Digital Twin framework containing multi-fidelity modeling to reduce the discrepancy between measurements and simulations and a deep generative model to generate close-to-experiment guided wave responses by harnessing the vital characteristics of the two sources. These realistic simulations (close to experiment) can then be used in assessing the reliability of health monitoring system by generating probability of detection curves. Furthermore, they can also be used for augmenting the training data for a machine learning algorithm. We use a measurement dataset corresponding to crack propagation and simulations to validate the proposed framework. The results show that the discrepancy is indeed reduced to a great extent, furthermore, we also s...
Source: Ultrasonics - Category: Physics Authors: Source Type: research