Development of a CRISPR/Cas12a-mediated aptasensor for Mpox virus antigen detection

Biosens Bioelectron. 2024 Apr 24;257:116313. doi: 10.1016/j.bios.2024.116313. Online ahead of print.ABSTRACTThe emergence and rapid spread of Mpox (formerly monkeypox) have caused significant societal challenges. Adequate and appropriate diagnostics procedures are an urgent necessity. Herein, we discover a pair of aptamers through the systematic evolution of ligands by exponential enrichment (SELEX) that exhibit high affinity and bind to different sites towards the A29 protein of the Mpox virus. Subsequently, we propose a facile, sensitive, convenient CRISPR/Cas12a-mediated aptasensor for detecting the A29 antigen. The procedure employs the bivalent aptamers recognition, which induces the formation of a proximity switch probe and initiates subsequent cascade strand displacement reactions, then triggers CRISPR/Cas12a DNA trans-cleavage to achieve the sensitive detection of Mpox. Our method enables selective and ultrasensitive evaluation of the A29 protein within the range of 1 ng mL-1 to 1 μg mL-1, with a limit of detection (LOD) at 0.28 ng mL-1. Moreover, spiked A29 protein recovery exceeds 96.9%, while the detection activity remains above 91.9% after six months of storage at 4 °C. This aptasensor provides a novel avenue for exploring clinical diagnosis in cases involving Mpox as facilitating development in various analyte sensors.PMID:38688229 | DOI:10.1016/j.bios.2024.116313
Source: Biosensors and Bioelectronics - Category: Biotechnology Authors: Source Type: research