Ternary Rotational Polyanion Coupling Enables Fast Li Ion Dynamics in Tetrafluoroborate Ion Doped Antiperovskite Li2OHCl Solid Electrolyte

Angew Chem Int Ed Engl. 2024 Apr 16:e202400144. doi: 10.1002/anie.202400144. Online ahead of print.ABSTRACTLi-rich antiperovskite (LiRAP) hydroxyhalides are emerging as attractive solid electrolyte (SEs) for all-solid-state Li metal batteries (ASSLMBs) due to their low melting point, low cost, and ease of scaling-up. The incorporation of rotational polyanions can reduce the activation energy and thus improve the Li ion conductivity of SEs. Herein, we propose a ternary rotational polyanion coupling strategy to fasten the Li ion conduction in tetrafluoroborate (BF4-) ion doped LiRAP Li2OHCl. Assisted by first-principles calculation, powder X-ray diffraction, solid-state magnetic resonance and electrochemical impedance spectra, it is confirmed that Li ion transport in BF4- ion doped Li2OHCl is strongly associated with the rotational coupling among OH-, BF4- and Li2-O-H octahedrons, which enhances the Li ion conductivity for more than 1.8 times with the activation energy lowering 0.03 eV. This work provides a new perspective to design high-performance superionic conductors with multi-polyanions.PMID:38624087 | DOI:10.1002/anie.202400144
Source: Angewandte Chemie - Category: Chemistry Authors: Source Type: research
More News: Chemistry