Percentile Optimization in Wireless Networks—Part II: Beamforming for Cell-Edge Throughput Maximization

Part I of this two-part paper focused on the formulation of percentile problems, complexity analysis, and development of power control algorithms via the quadratic fractional transform (QFT) and logarithmic fractional transform (LFT) for sum-least-$q^{\mathrm{th}}$-percentile (SLqP) rate maximization problems. In this second part, we first tackle the significantly more challenging problems of optimizing SLqP rate via beamforming in a multiuser, multiple-input multiple-output (MU-MIMO) network to maximize cell-edge throughput. To this end, we first propose an adaptation of the QFT algorithm presented in Part I that enables optimization of the complex-valued multidimensional beamforming weights for the SLqP rate utility function. We also introduce a new class of problems which we term as sum-greatest-$q^{\mathrm{th}}$-percentile weighted mean squared error (SGqP-WMSE) minimization. We show that this class subsumes the well-known sum-weighted mean squared error (WMMSE) minimization and max-WMSE minimization problems. We demonstrate an equivalence between this class of problems and the SLqP rate maximization problems, and show that this correspondence can be exploited to obtain stationary-point solutions for the aforementioned beamforming problem. Next, we develop extensions for the QFT and LFT algorithms from Part I to optimize ergodic long-term average or ergodic SLqP utility. Finally, we also consider related problems which can be solved using the proposed techniques, includin...
Source: IEEE Transactions on Signal Processing - Category: Biomedical Engineering Source Type: research