ResDeepSurv: A Survival Model for Deep Neural Networks Based on Residual Blocks and Self-attention Mechanism

AbstractSurvival analysis, as a widely used method for analyzing and predicting the timing of event occurrence, plays a crucial role in the medicine field. Medical professionals utilize survival models to gain insight into the effects of patient covariates on the disease, and the correlation with the effectiveness of different treatment strategies. This knowledge is essential for the development of treatment plans and the enhancement of treatment approaches. Conventional survival models, such as the Cox proportional hazards model, require a significant amount of feature engineering or prior knowledge to facilitate personalized modeling. To address these limitations, we propose a novel residual-based self-attention deep neural network for survival modeling, called ResDeepSurv, which combines the benefits of neural networks and the Cox proportional hazards regression model. The model proposed in our study simulates the distribution of survival time and the correlation between covariates and outcomes, but does not impose strict assumptions on the basic distribution of survival data. This approach effectively accounts for both linear and nonlinear risk functions in survival data analysis. The performance of our model in analyzing survival data with various risk functions is on par with or even superior to that of other existing survival analysis methods. Furthermore, we validate the superior performance of our model in comparison to currently existing methods by evaluating multip...
Source: Interdisciplinary Sciences, Computational Life Sciences - Category: Bioinformatics Source Type: research