Spaced double hydrogen bonding for highly efficient and selective photocatalytic air reductive H2O2 synthesis

Angew Chem Int Ed Engl. 2024 Feb 14:e202400857. doi: 10.1002/anie.202400857. Online ahead of print.ABSTRACTPhotocatalytic oxygen reductive H2O2 production is a promising approach to alternative industrial anthraquinone processes while suffering from the requirement of pure O2 feedstock for practical application. Herein, we report a spaced double hydrogen bond (IC-H-bond) through multi-component Radziszewski reaction in an imidazole poly-ionic-liquid composite (SI-PIL-TiO2) and levofloxacin hydrochloride (LEV) electron donor for highly efficient and selective photocatalytic air reductive H2O2 production. It is found that the IC-H-bond formed by spaced imino (-NH-) group of SI-PIL-TiO2 and carbonyl (-C=O) group of LEV can switch the imidazole active sites characteristic from a covered state to a fully exposed one to shield the strong adsorption of electron donor and N2 in the air, and propel an intenser positive potential and more efficient orbitals binding patterns of SI-PIL-TiO2 surface to establish competitive active sites for selectivity O2 chemisorption. Moreover, the high electron enrichment of imidazole as an active site for the 2e- oxygen reduction ensures the rapid reduction of O2. Therefore, the IC-H-bond enables a total O2 utilization and conversion efficiency of 94.8% from direct photocatalytic air reduction, achieving a H2O2 production rate of 1518 µmol/g/h that is 16 and 23 times compared to poly-ionic-liquid composite without spaced imino groups (PIL-TiO2) and T...
Source: Angewandte Chemie - Category: Chemistry Authors: Source Type: research
More News: Chemistry | Levaquin