FedDP: Dual Personalization in Federated Medical Image Segmentation

Personalized federated learning (PFL) addresses the data heterogeneity challenge faced by general federated learning (GFL). Rather than learning a single global model, with PFL a collection of models are adapted to the unique feature distribution of each site. However, current PFL methods rarely consider self-attention networks which can handle data heterogeneity by long-range dependency modeling and they do not utilize prediction inconsistencies in local models as an indicator of site uniqueness. In this paper, we propose FedDP, a novel fed erated learning scheme with ${d}$ ual ${p}$ ersonalization, which improves model personalization from both feature and prediction aspects to boost image segmentation results. We leverage long-range dependencies by designing a local query (LQ) that decouples the query embedding layer out of each local model, whose parameters are trained privately to better adapt to the respective feature distribution of the site. We then propose inconsistency-guided calibration (IGC), which exploits the inter-site prediction inconsistencies to accommodate the model learning concentration. By encouraging a model to penalize pixels with larger inconsistencies, we better tailor prediction-level patterns to each local site. Experimentally, we compare FedDP with the state-of-the-art PFL methods on two popular medical image segmentation tasks with different modalities, where our results consistently outperform others on both tasks. Our code and models are availa...
Source: IEE Transactions on Medical Imaging - Category: Biomedical Engineering Source Type: research