A 0.67 $\mu$V-IIRN super-T$\Omega$-Z$_{IN}$ 17.5 $\mu$W/Ch Active Electrode With In-Channel Boosted CMRR for Distributed EEG Monitoring

We present the design, development, and experimental characterization of an active electrode (AE) IC for wearable ambulatory EEG recording. The proposed architecture features in-AE double common-mode (CM) rejection, making the recording's CMRR independent of typically-significant AE-to-AE gain variations. Thanks to being DC coupled and needless of chopper stabilization for flicker noise suppression, the architecture yields a super-T$\Omega$ input impedance. Such a large input impedance makes the AE's CMRR practically immune to electrode-skin interface impedance variations across different recording channels, a critical feature for dry-electrode ambulatory systems. Signal quantization and serialization are also performed in-AE, which enables a distributed system in which all AEs use a single data bus for data/command communication to the backend module, thus significantly improving the system's scalability. Additionally, the presented AE hosts auxiliary modules for (i) detection of an unstable electrode-skin connection through continuous interface impedance monitoring, (ii) dynamic measurement and adjustment of input DC level, and (iii) a CM feedback loop for further CMRR enhancement. The article also presents the development of printed (extrusion) tattoo electrodes and their experimental characterization results with the proposed AE architecture. Besides bio-compatibility, low-cost, pattern flexibility, and quick fabrication process, the printed electrodes offer a very stable...
Source: IEEE Transactions on Biomedical Circuits and Systems - Category: Biomedical Engineering Source Type: research