A Deep Learning-Based Approach for Cervical Cancer Classification Using 3D CNN and Vision Transformer

AbstractCervical cancer is a significant health problem worldwide, and early detection and treatment are critical to improving patient outcomes. To address this challenge, a deep learning (DL)-based cervical classification system is proposed using 3D convolutional neural network and Vision Transformer (ViT) module. The proposed model leverages the capability of 3D CNN to extract spatiotemporal features from cervical images and employs the ViT model to capture and learn complex feature representations. The model consists of an input layer that receives cervical images, followed by a 3D convolution block, which extracts features from the images. The feature maps generated are down-sampled using max-pooling block to eliminate redundant information and preserve important features. Four Vision Transformer models are employed to extract efficient feature maps of different levels of abstraction. The output of each Vision Transformer model is an efficient set of feature maps that captures spatiotemporal information at a specific level of abstraction. The feature maps generated by the Vision Transformer models are then supplied into the 3D feature pyramid network (FPN) module for feature concatenation. The 3D squeeze-and-excitation (SE) block is employed to obtain efficient feature maps that recalibrate the feature responses of the network based on the interdependencies between different feature maps, thereby improving the discriminative power of the model. At last, dimension minimiza...
Source: Journal of Digital Imaging - Category: Radiology Source Type: research